Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (5): 995-1013.doi: 10.23919/JSEE.2021.000085
• New Developments on FDD and FTC Techniques • Next Articles
Steven Xianchuan DING1(), Linlin LI2,*(), Bin JIANG3()
Received:
2021-02-01
Online:
2021-10-18
Published:
2021-11-04
Contact:
Linlin LI
E-mail:steven.ding@uni-due.de;linlin.li@ustb.edu.cn;binjiang@nuaa.edu.cn
About author:
Supported by:
Steven Xianchuan DING, Linlin LI, Bin JIANG. Unified control and detection framework and its applications: a review, some new results, and future perspectives[J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 995-1013.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | DING S X. Model-based fault diagnosis techniques—design schemes, algorithms and tools. 2nd ed. London: Springer-Verlag, 2013. |
2 |
DU D S, JIANG B, SHI P, et al Fault detection for continuous-time switched systems under asynchronous switching. International Journal of Robust and Nonlinear Control, 2014, 24 (11): 1694- 1704.
doi: 10.1002/rnc.2961 |
3 |
SHEN Q S, JIANG B, SHI P Fault diagnosis for T-S fuzzy systems with sensor faults and system performance analysis. IEEE Trans. on Fuzzy Systems, 2014, 22 (2): 274- 284.
doi: 10.1109/TFUZZ.2013.2252355 |
4 | NETT C N, JACOBSON C, MILLER A T An integrated approach to controls and diagnostics. Proc. of the American Control Conference, 1988, 824- 835. |
5 |
JACOBSON C, NETT C An integrated approach to controls and disgnostics using the four parameter controller. IEEE Control Systems Magazine, 1991, 11 (6): 22- 29.
doi: 10.1109/37.92987 |
6 | TYLER M L, MORARI M Optimal and robust design of integrated control and diagnostic modules. Proc. of American Control Conference, 1994, 2060- 2064. |
7 | MURAD G, POSTLETHWAITE I, GU D W A robust design approach to integrated control and diagnostics. Proc. of the 13th International Federation of Automatic Control Word Congress, 1996, 7, 199- 204. |
8 | KISGAARD S, RANK M, NIEMANN H, et al Simultaneous design of controller and fault detector. Proc. of the 35th IEEE Conference on Decision and Control, 1996, 628- 629. |
9 |
SOUTSTRUP J, GRIMBLE M, NIEMANN H Design of integrated systems for the control and detection of actuator/sensor faults. Sensor Review, 1997, 17 (2): 138- 149.
doi: 10.1108/02602289710170311 |
10 | NIEMANN H, SOUTSTRUP J Integration of control and fault detection: nominal and robust design. Proc. of the 3rd International Federation of Automatic Control Symposium, 1997, 30 (18): 341- 346. |
11 | ZHOU K M, DOYLE J, GLOVER K. Robust and optimal control. New Jersey: Prentice-Hall, 1996. |
12 |
KHOSROWJERDI M J, NIKOUKHAH R, SAFARI-SHAD N A mixed H-2/H-infinity approach to simultaneous fault detection and control. Automatica, 2004, 40 (2): 261- 267.
doi: 10.1016/j.automatica.2003.09.011 |
13 | WENG Z X, PATTON R, CUI P Integrated design of robust controller and fault estimator for linear parameter varying systems. Proc. of the 17th International Federation of Automatic Control World Congress, 2008, 41 (2): 4535- 4539. |
14 |
WANG H, YANG G H Integrated fault detection and control for LPV systems. International Journal of Robust and Nonlinear Control, 2009, 19 (3): 341- 363.
doi: 10.1002/rnc.1330 |
15 |
DING S X Integrated design of feedback controllers and fault detectors. Annual Reviews in Control, 2009, 33 (2): 124- 135.
doi: 10.1016/j.arcontrol.2009.08.003 |
16 |
HENRY D, ZOLGHADRI A Design and analysis of robust residual generators for systems under feedback control. Automatica, 2005, 41 (2): 251- 264.
doi: 10.1016/j.automatica.2004.09.013 |
17 | SUZUKI T, TOMIZUKA M Joint synthesis of fault detector and controller based on structure of two-degree-of-freedom control system. Proc. of the 38th IEEE Conference on Decision and Control, 1999, 3599- 3604. |
18 |
ZHOU K M, REN Z A new controller architecture for high performance, robust, and fault-tolerant control. IEEE Trans. on Automatic Control, 2001, 46 (10): 1613- 1618.
doi: 10.1109/9.956059 |
19 |
DING S X, YANG G J, ZHANG P, et al Feedback control structures, embedded residual signals and feedback control schemes with an integrated residual access. IEEE Trans. on Control Systems Technology, 2010, 18 (2): 352- 367.
doi: 10.1109/TCST.2009.2018451 |
20 | DING S X. Data-driven design of fault diagnosis and fault-tolerant control systems. London: Springer-Verlag, 2014. |
21 | STEVEN X D. Advanced methods for fault diagnosis and fault-tolerant control. Berlin: Springer-Verlag, 2020. |
22 | WILLEMS J Deterministic least squares filtering. Journal of Econometrics, 2014, 118 (1/2): 341- 373. |
23 |
GEORGIOU T T, SMITH M C Optimal robustness in the gap metric. IEEE Trans. on on Automatic Control, 1990, 35 (6): 673- 686.
doi: 10.1109/9.53546 |
24 |
LI L L, LUO H, DING S X Performance-based fault detection and fault-tolerant control for automatic control systems. Automatica, 2019, 99, 308- 316.
doi: 10.1016/j.automatica.2018.10.047 |
25 |
DING S X, LI L L Gap metric techniques and their application to fault detection performance analysis and fault isolation schemes. Automatica, 2020, 118, 109029.
doi: 10.1016/j.automatica.2020.109029 |
26 |
LI L L, DING S X Optimal detection schemes for multiplicative faults in uncertain systems with application to rolling mill processes. IEEE Trans. on Control Systems Technology, 2020, 28 (6): 2432- 2444.
doi: 10.1109/TCST.2019.2947876 |
27 |
VIDYASAGAR M, KIMURA H Robust controllers for uncertain linear variable systems. Automatica, 1986, 22, 85- 94.
doi: 10.1016/0005-1098(86)90107-X |
28 | VINNICOMBE G. Uncertainty and feedback: H loop-shaping and the V-gap metric. Singapore: World Scientific, 2000. |
29 | SKOGESTAD S, POSTLETHWAITE I. Multivariable feedback control. New York: John Wiley and Sons, Ltd, 2005. |
30 | FRANCIS B A. A course in H-infinity control theory. Berlin/New York: Springer-Verlag, 1987. |
31 | TAY T T, MAREELS I, MOORE J B. High performance control. New York: Springer Science & Business Media, 1998. |
32 |
LI L L, DING S X, LUO H, et al Performance-based fault-tolerant control approaches for industrial processes with multiplicative faults. IEEE Trans. on Industrial Information, 2020, 16 (7): 4759- 4768.
doi: 10.1109/TII.2019.2946882 |
33 |
LI L L, DING S X Performance supervised fault detection schemes for industrial feedback control systems and their data-driven implementation. IEEE Trans. on Industrial Information, 2020, 16 (4): 2849- 2858.
doi: 10.1109/TII.2019.2940099 |
34 |
LUO H, YIN S, LIU T Y, et al A data-driven realization of the control performance-oriented process monitoring system. IEEE Trans. on Industrial Electronics, 2020, 67 (1): 521- 530.
doi: 10.1109/TIE.2019.2892705 |
35 |
XU Y S, DING S X, LUO H, et al A real-time performance recovery framework for vision-based control systems. IEEE Trans. on Industrial Electronics, 2021, 68 (2): 1571- 1580.
doi: 10.1109/TIE.2020.2967678 |
36 |
LIU D, YANG Y, LI L L, et al Control performance-based fault-tolerant control strategy for singular systems. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2020, 50 (7): 2398- 2407.
doi: 10.1109/TSMC.2018.2815002 |
37 |
HAN H Y, YANG Y, LI L L, et al Performance-based fault detection and fault-tolerant control for nonlinear systems with T-S fuzzy implementation. IEEE Trans. on Cybernetics, 2021, 51 (2): 801- 804.
doi: 10.1109/TCYB.2019.2951534 |
38 |
ZHONG M Y, DING S X, ZHOU D H, et al An Hi/H∞ optimization approach to event triggered fault detection for linear discrete time systems . IEEE Trans. on Automatic Control, 2020, 65 (10): 4464- 4471.
doi: 10.1109/TAC.2020.3006811 |
39 |
DING S X, YANG Y, ZHANG Y, et al Data-driven realization of kernel and image representations and their application to fault detection and control system design. Automatica, 2014, 50 (10): 2615- 2623.
doi: 10.1016/j.automatica.2014.08.022 |
40 |
YANG X, GAO J J, LUO H, et al Data-driven design of fault tolerant control systems based on recursive stable image representation. Automatica, 2020, 122, 109246.
doi: 10.1016/j.automatica.2020.109246 |
41 |
LI L L, DING S X, YANG Y, et al A fault detection approach for nonlinear systems based on data-driven realizations of fuzzy kernel representations. IEEE Trans. on Fuzzy Systems, 2018, 26 (4): 1800- 1812.
doi: 10.1109/TFUZZ.2017.2752136 |
42 | GRIEVES M. Virtually intelligent product systems: digital and physical twins. Virginia: American Institute of Aeronautics and Astronautics, 2019. |
[1] | Sader MALIKA, Fuyong WANG, Zhongxin LIU, Zengqiang CHEN. Distributed fuzzy fault-tolerant consensus of leader-follower multi-agent systems with mismatched uncertainties [J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1031-1040. |
[2] | Ziquan YU, Youmin ZHANG, Bin JIANG. PID-type fault-tolerant prescribed performance control of fixed-wing UAV [J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1053-1061. |
[3] | Haibin Sun, Shihua Li, and Changyin Sun. Adaptive fault-tolerant controller design for airbreathing hypersonic vehicle with input saturation [J]. Journal of Systems Engineering and Electronics, 2013, 24(3): 488-. |
[4] | Yufei Xu, Bin Jiang, Zhifeng Gao, and Ke Zhang. Fault tolerant control for near space vehicle: a survey and some new results [J]. Journal of Systems Engineering and Electronics, 2011, 22(1): 88-94. |
[5] | Huo Zhihong & Fang Huajing. Research on robust fault-tolerant control for networked control system with packet dropout [J]. Journal of Systems Engineering and Electronics, 2007, 18(1): 76-82. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||