Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (4): 873-880.doi: 10.23919/JSEE.2021.000075
• SYSTEMS ENGINEERING • Previous Articles Next Articles
Yunjian ZHANG1(), Pingping PAN1(
), Zhenmiao DENG1,*(
), Gang WU2(
)
Received:
2020-08-04
Online:
2021-08-18
Published:
2021-09-30
Contact:
Zhenmiao DENG
E-mail:zhangyunj@mail.sysu.edu.cn;pingping_pan2008@163.com;dengzhm7@sysu.edu.cn
About author:
Supported by:
Yunjian ZHANG, Pingping PAN, Zhenmiao DENG, Gang WU. Range-spread target detector via coherent energy accumulation and block thresholding denoising[J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 873-880.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Simulation parameters"
Parameter | Value |
Center frequency/GHz | 9 |
Bandwidth/GHz | 1 |
Pulse width/μs | 100 |
Sampling frequency/GHz | 1 |
PRF/Hz | 50 |
Target #1 (aircraft) initial distance/m | 16 000 |
Target #1 (aircraft) velocity/(m/s) | 1 000 |
Target #1 (aircraft) acceleration/(m/s2) | 0 |
Target #2 (UAV) initial distance/m | 1 000 |
Target #2 (UAV) velocity/(m/s) | 50 |
Target #2 (UAV) acceleration/(m/s2) | 2.5 |
1 |
CHANG J Y, FU X J, JIANG W, et al Wideband radar detector based on characteristic parameters of echoes. Journal of Systems Engineering and Electronics, 2019, 30 (5): 897- 904.
doi: 10.21629/JSEE.2019.05.08 |
2 |
CHANG J Y, FU X J, JIANG W, et al Design of high-performance energy integrator detector for wideband radar. Journal of Systems Engineering and Electronics, 2019, 30 (6): 1110- 1118.
doi: 10.21629/JSEE.2019.06.07 |
3 |
XU S W, SHUI P L Performance analysis of multi-channel order statistics detector for range-spread target. Journal of Systems Engineering and Electronics, 2012, 23 (5): 689- 699.
doi: 10.1109/JSEE.2012.00085 |
4 |
BANDIERA F, BESSON O, RICCI G Adaptive detection of distributed targets in compound-Gaussian noise without secondary data: a Bayesian approach. IEEE Trans. on Signal Processing, 2011, 59 (12): 5698- 5708.
doi: 10.1109/TSP.2011.2167613 |
5 | LEE S, NGUYEN M, SONG I, et al Detection schemes for range-spread targets based on the semidefinite problem. IEEE Trans. on Aerospace and Electronic Systems, 2018, 55 (1): 57- 69. |
6 | GAO Y C, LI H B, HIMED B Knowledge-aided range-spread target detection for distributed MIMO radar in nonhomogeneous environments. IEEE Trans. on Signal Processing, 2016, 65 (3): 617- 627. |
7 |
GAO Y C, LIAO G S, LIU W J High-resolution radar detection in interference and nonhomogeneous noise. IEEE Signal Processing Letters, 2016, 23 (10): 1359- 1363.
doi: 10.1109/LSP.2016.2597738 |
8 |
AUBRY A, DE M A, PALLOTTA L, et al Radar detection of distributed targets in homogeneous interference whose inverse covariance structure is defined via unitary invariant functions. IEEE Trans. on Signal Processing, 2013, 61 (20): 4949- 4961.
doi: 10.1109/TSP.2013.2273444 |
9 |
DAI F Z, LIU H W, SHUI P L, et al Adaptive detection of wideband radar range spread targets with range walking in clutter. IEEE Trans. on Aerospace and Electronic Systems, 2012, 48 (3): 2052- 2064.
doi: 10.1109/TAES.2012.6237578 |
10 |
HE Y, JIAN T, SU F G, et al Novel range-spread target detectors in non-Gaussian clutter. IEEE Trans. on Aerospace and Electronic Systems, 2010, 46 (3): 1312- 1328.
doi: 10.1109/TAES.2010.5545191 |
11 |
CONTE E, DE M A, RICCI G GLRT-based adaptive detection algorithms for range-spread targets. IEEE Trans. on Signal Processing, 2001, 49 (7): 1336- 1348.
doi: 10.1109/78.928688 |
12 |
GERLACH K, STEINER M J Adaptive detection of range distributed targets. IEEE Trans. on Signal Processing, 1999, 47 (7): 1844- 1851.
doi: 10.1109/78.771034 |
13 |
LIU W J, LIU J, HUANG L, et al Rao tests for distributed target detection in interference and noise. Signal Processing, 2015, 117, 333- 342.
doi: 10.1016/j.sigpro.2015.06.012 |
14 |
SHI B, HAO C P, HOU C H, et al Parametric Rao test for multichannel adaptive detection of range-spread target in partially homogeneous environments. Signal Processing, 2015, 108, 421- 429.
doi: 10.1016/j.sigpro.2014.10.007 |
15 |
HAO C P, MA X C, SHANG X Q, et al Adaptive detection of distributed targets in partially homogeneous environment with Rao and Wald tests. Signal Processing, 2012, 92 (4): 926- 930.
doi: 10.1016/j.sigpro.2011.10.005 |
16 |
GUAN J, ZHANG X L Subspace detection for range and Doppler distributed targets with Rao and Wald tests. Signal Processing, 2011, 91 (1): 51- 60.
doi: 10.1016/j.sigpro.2010.06.006 |
17 |
CONTE E, DE M A Distributed target detection in compound-Gaussian noise with Rao and Wald tests. IEEE Trans. on Aerospace and Electronic Systems, 2003, 39 (2): 568- 582.
doi: 10.1109/TAES.2003.1207267 |
18 | LIU W J, LIU J, LI H, et al Multichannel signal detection based on Wald test in subspace interference and Gaussian noise. IEEE Trans. on Aerospace and Electronic Systems, 2018, 55 (3): 1370- 1381. |
19 |
LEI S W, ZHAO Z Q, NIE Z P, et al A CFAR adaptive subspace detector based on a single observation in system-dependent clutter background. IEEE Trans. on Signal Processing, 2014, 62 (20): 5260- 5269.
doi: 10.1109/TSP.2014.2348952 |
20 |
SHUI P L, LIU H W, BAO Z Range-spread target detection based on cross time-frequency distribution features of two adjacent received signals. IEEE Trans. on Signal Processing, 2009, 57 (10): 3733- 3745.
doi: 10.1109/TSP.2009.2029715 |
21 |
ZUO L, LI M, ZHANG X W, et al CFAR detection of range-spread targets based on the time-frequency decomposition feature of two adjacent returned signals. IEEE Trans. on Signal Processing, 2013, 61 (24): 6307- 6319.
doi: 10.1109/TSP.2013.2282274 |
22 |
XU S W, SHUI P L Range-spread target detection using 2D non-local nonlinear shrinkage map. Signal Processing, 2014, 98, 337- 343.
doi: 10.1016/j.sigpro.2013.12.007 |
23 |
SHUI P L, XU S W, LIU H W Range-spread target detection using consecutive HRRPs. IEEE Trans. on Aerospace and Electronic Systems, 2011, 47 (1): 647- 665.
doi: 10.1109/TAES.2011.5705697 |
24 | CIUONZO D, DE M A, ORLANDO D On the statistical invariance for adaptive radar detection in partially homogeneous disturbance plus structured interference. IEEE Trans. on Signal Processing, 2016, 65 (5): 1222- 1234. |
25 | DE M A, ORLANDO D Adaptive radar detection of a subspace signal embedded in subspace structured plus Gaussian interference via invariance. IEEE Trans. on Signal Processing, 2015, 64 (8): 2156- 2167. |
26 |
CIUONZO D, ORLANDO D, PALLOTTA L On the maximal invariant statistic for adaptive radar detection in partially homogeneous disturbance with persymmetric covariance. IEEE Signal Processing Letters, 2016, 23 (12): 1830- 1834.
doi: 10.1109/LSP.2016.2618619 |
27 |
LIU J, ZHANG Z J, CAO Y H, et al Distributed target detection in subspace interference plus Gaussian noise. Signal Processing, 2014, 95, 88- 100.
doi: 10.1016/j.sigpro.2013.08.012 |
28 | TIVIVE F H C, BOUZERDOUM A, AMIN A G A subspace projection approach for wall clutter mitigation in through-the-wall radar imaging. IEEE Trans. on Geoscience and Remote Sensing, 2014, 53 (4): 2108- 2122. |
29 |
WANG Y, CAO Y H, SU H T, et al RFD-Rao and RFD-Wald tests for distributed targets with range walking effect. Journal of Central South University, 2018, 25 (6): 1437- 1446.
doi: 10.1007/s11771-018-3838-0 |
30 |
XU S W, SHUI P L, YAN X CFAR detection of range-spread target in white Gaussian noise using waveform entropy. Electronics Letters, 2010, 46 (9): 647- 649.
doi: 10.1049/el.2010.3329 |
31 |
YANG X L, WEN G J, MA C H, et al CFAR detection of moving range-spread target in white Gaussian noise using waveform contrast. IEEE Geoscience and Remote Sensing Letters, 2016, 13 (2): 282- 286.
doi: 10.1109/LGRS.2015.2511060 |
32 | XU S W, SHI X Y, XUE J, et al. Maneuvering range-spread target detection in white Gaussian noise using multiple-pulse combined waveform contrast. Proc. of the IEEE International Conference on Signal Processing, Communications and Computing, 2017: 1−5. |
33 | XU S W, ZHU J N, SHI X Y, et al CFAR detection of range-spread target in white Gaussian noise based on the discrepancy of distance of successive HRRPs. Proc. of the IEEE International Conference on Signal Processing, Communications and Computing, 2018, 1- 5. |
34 | CAI T T On block thresholding in wavelet regression: adaptivity, block size, and threshold level. Statistica Sinica, 2002, 12 (4): 1241- 1273. |
35 | O’DONOUGHUE N, MOURA J M F On the product of independent complex Gaussians. IEEE Trans. on Signal Processing, 2011, 60 (3): 1050- 1063. |
[1] | Zongling LI, Qingjun ZHANG, Teng LONG, Baojun ZHAO. A parallel pipeline connected-component labeling method for on-orbit space target monitoring [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1095-1107. |
[2] | Hao FENG, Jianzhong WU, Lu ZHANG, Mingsheng LIAO. Unsupervised change detection of man-made objects using coherent and incoherent features of multi-temporal SAR images [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 896-906. |
[3] | Jing GUI, Heming ZHAO, Xiang XU. Heading constraint algorithm for foot-mounted PNS using low-cost IMU [J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 727-736. |
[4] | Liangliang WANG, Gongjian ZHOU. Multiframe track-before-detect method based on velocity filtering in mixed coordinates [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 247-258. |
[5] | Jun HAN, Weixing LI, Kai FENG, Feng PAN. Vision-based aerial image mosaicking algorithm with object detection [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 259-268. |
[6] | Yongchan GAO, Linlin MAO, Shengqi ZHU, Lei ZUO. Subspace detection for range-spread target to suppress interference: exploiting persymmetry in non-homogeneous scenario [J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 60-71. |
[7] | Fengming HU, Jicang WU. Detecting spatio-temporal urban surface changes using identified temporary coherent scatterers [J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1304-1317. |
[8] | Steven Xianchuan DING, Linlin LI, Bin JIANG. Unified control and detection framework and its applications: a review, some new results, and future perspectives [J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 995-1013. |
[9] | Yongbin YU, Chenyu YANG, Quanxin DENG, Tashi NYIMA, Shouyi LIANG, Chen ZHOU. Memristive network-based genetic algorithm and its application to image edge detection [J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1062-1070. |
[10] | Meiyan PAN, Jun SUN, Yuhao YANG, Dasheng LI, Junpeng YU. M-FCN based sea-surface weak target detection [J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1111-1118. |
[11] | Tao YE, Zongyang ZHAO, Jun ZHANG, Xinghua CHAI, Fuqiang ZHOU. Low-altitude small-sized object detection using lightweight feature-enhanced convolutional neural network [J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 841-853. |
[12] | Peng YANG, Haoyu XIE, Jing QIU. System level test selection based on combinatorial dependency matrix [J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 984-994. |
[13] | Tao WAN, Kaili JIANG, Jingyi LIAO, Tingting JIA, Bin TANG. Research on LPI radar signal detection and parameter estimation technology [J]. Journal of Systems Engineering and Electronics, 2021, 32(3): 566-572. |
[14] | Md Rizwan KHAN, Bikramaditya DAS, Bibhuti Bhusan PATI. A criterion based adaptive RSIC scheme in underwater communication [J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 408-416. |
[15] | Xia WU, Yan LI, Yongjian SUN, Alei CHEN, Jianwen CHEN, Jianchao MA, Hao CHEN. Investigation of MAS structure and intelligent+ information processing mechanism of hypersonic target detection and recognition system [J]. Journal of Systems Engineering and Electronics, 2020, 31(6): 1105-1115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||