Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (4): 831-840.doi: 10.23919/JSEE.2021.000072
• ELECTRONICS TECHNOLOGY • Previous Articles Next Articles
Chao WU1,2,*(), Erxiao LIU1(), Zhihua JIAN1()
Received:
2020-06-09
Online:
2021-08-18
Published:
2021-09-30
Contact:
Chao WU
E-mail:wuchao@126.com;liuerxiao@hdu.edu.cn;jianzh@hdu.edu.cn
About author:
Supported by:
Chao WU, Erxiao LIU, Zhihua JIAN. Two-step compressed acquisition method for Doppler frequency and Doppler rate estimation in high-dynamic and weak signal environments[J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 831-840.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Theoretical MAC comparison"
Process | DCFT[ | BASIC[ | TCAM |
Preparing process multiplication | | | |
Search process multiplication | | μcL |
Table 2
Simulation parameters"
Parameter | Value |
Bit sign period NB | 20 |
Doppler frequency search range/Hz | [?250, 250] |
Doppler rate search range/(Hz/s) | [?500, 500] |
False alarm probability Pi,FA | 0.002 |
Sampling time Ts/ms | 1 |
Doppler frequency estimation resolution/Hz | 1/(2T) |
Doppler frequency estimation resolution | |
Channel | AWGN channel |
Number of Monte Carlo simulations | 10000 |
1 |
KONG S H High sensitivity and fast acquisition signal processing techniques for GNSS receivers: from fundamentals to state-of-the-art GNSS acquisition technologies. IEEE Signal Processing Magazine, 2017, 34 (5): 59- 71.
doi: 10.1109/MSP.2017.2714201 |
2 |
QAISAR S U, BENSON C R Processing cost of Doppler search in GNSS signal acquisition: measuring Doppler shift in navigation satellite signals. IEEE Signal Processing Magazine, 2017, 34 (5): 53- 58.
doi: 10.1109/MSP.2017.2715979 |
3 |
XIE F, SUN R, KANG G H, et al A jamming tolerant BeiDou combined B1/B2 vector tracking algorithm for ultra-tightly coupled GNSS/INS systems. Aerospace Science and Technology, 2017, 70, 265- 276.
doi: 10.1016/j.ast.2017.08.019 |
4 | GAO F Q, XIA H X Fast GNSS signal acquisition with Doppler frequency estimation algorithm. GPS Solutions, 2018, 22 (4): 1- 13. |
5 |
ZENG Q X, QIU W Q, ZHANG P N, et al A fast acquisition algorithm based on division of GNSS signals. Journal of Navigation, 2018, 71 (4): 933- 954.
doi: 10.1017/S0373463317000984 |
6 |
JUAN B O, ROSA A V, FERNANDO G C Energy efficient GNSS signal acquisition using singular value decomposition (SVD). Sensors, 2018, 18 (5): 1586.
doi: 10.3390/s18051586 |
7 |
WU C, GAO Y Low-computation GNSS signal acquisition method based on a complex signal phase in the presence of sign transitions. IEEE Trans. on Aerospace and Electronic Systems, 2020, 56 (6): 4177- 4191.
doi: 10.1109/TAES.2020.2988183 |
8 | GUO W F, NIU X J, GUO C, et al A new FFT acquisition scheme based on partial matched filter in GNSS receivers for harsh environments. Aerospace Science and Technology, 2016, 61, 66- 72. |
9 |
KONG S H A deterministic compressed GNSS acquisition technique. IEEE Trans. on Vehicular Technology, 2013, 62 (2): 511- 521.
doi: 10.1109/TVT.2012.2220989 |
10 |
KONG S H, KIM B Two-dimensional compressed correlator for fast PN code acquisition. IEEE Trans. on Wireless Communications, 2013, 12 (11): 5859- 5867.
doi: 10.1109/TWC.2013.092313.130407 |
11 |
ZHU C, FAN X N A novel method to extend coherent integration for weak GPS signal acquisition. IEEE Communications Letters, 2015, 19 (8): 1343- 1346.
doi: 10.1109/LCOMM.2015.2448101 |
12 |
KONG S H SDHT for fast detection of weak GNSS signals. IEEE Journal on Selected Areas in Communications, 2015, 33 (11): 2366- 2378.
doi: 10.1109/JSAC.2015.2430291 |
13 | QIN F, ZHAN X Q, ZHAN L Performance assessment of a low-cost inertial measurement unit based ultra-tight global navigation satellite system/inertial navigation system integration for high dynamic applications. IET Radar, Sonar & Navigation, 2014, 8 (7): 828- 836. |
14 | ZHAN X Q, QIN F, DU G Improvement of global navigation satellite system signal acquisition using different grade inertial measurement units for high dynamic applications. IET Radar, Sonar & Navigation, 2014, 8 (3): 233- 241. |
15 | MA G J, YU B G, JIA R C, et al INS-aided high dynamic GNSS rapid acquisition and stable tracking. Radio Engineering, 2016, 46 (2): 23- 26. |
16 | DUAN R F, LIU R K, ZHOU Y, et al A carrier acquisition and tracking algorithm for high-dynamic weak signal. Lecture Notes in Electrical Engineering, 2013, 187, 211- 219. |
17 |
GOMEZ-CASCO D, LOPEZ-SALCEDO J A, SECO-GRANADOS G Optimal post-detection integration techniques for the reacquisition of weak GNSS signals. IEEE Trans. on Aerospace and Electronic Systems, 2020, 56 (3): 2302- 2311.
doi: 10.1109/TAES.2019.2948449 |
18 |
ZHANG W, GHOGHO M Computational efficiency improvement for unaided weak GPS signal acquisition. Journal of Navigation, 2012, 65 (2): 363- 375.
doi: 10.1017/S0373463311000737 |
19 |
LO PRESTI L, ZHU X, FANTINO M, et al GNSS signal acquisition in the presence of sign transition. IEEE Journal of Selected Topics in Signal Processing, 2009, 3 (4): 557- 570.
doi: 10.1109/JSTSP.2009.2024592 |
20 |
MA F H, GUO F C, YANG L Direct position determination of moving sources based on delay and Doppler. IEEE Sensors Journal, 2020, 20 (14): 7859- 7869.
doi: 10.1109/JSEN.2020.2980012 |
21 | YANG C, NGUYEN T, BLASCH E, et al. Post-correlation semi-coherent integration for high-dynamic and weak GPS signal acquisition. Proc. of the IEEE/ION Position, Location & Navigation Symposium, 2008: 1341−1349. |
22 |
YU W, ZHENG B, WATSON R, et al Differential combining for acquiring weak GPS signals. Signal Processing, 2007, 87 (5): 824- 840.
doi: 10.1016/j.sigpro.2006.08.004 |
23 |
LI X S, GUO W Efficient differential coherent accumulation algorithm for weak GPS signal bit synchronization. IEEE Communications Letters, 2013, 17 (5): 936- 939.
doi: 10.1109/LCOMM.2013.031913.130267 |
24 |
ESTEVES P, SAHMOUDI M, BOUCHERET M L Sensitivity characterization of differential detectors for acquisition of weak GNSS signals. IEEE Trans. on Aerospace and Electronic Systems, 2016, 52 (1): 20- 37.
doi: 10.1109/TAES.2015.130470 |
25 |
WU C, XU L P, ZHANG H, et al An improved acquisition method for GNSS in high dynamic environments: differential acquisition based on compressed sensing theory. Navigation, 2017, 64 (1): 23- 24.
doi: 10.1002/navi.173 |
26 |
LUO Y R, ZHANG L, HANG R An acquisition algorithm based on FRFT for weak GNSS signals in a dynamic environment. IEEE Communications Letters, 2018, 22 (6): 1212- 1215.
doi: 10.1109/LCOMM.2018.2828834 |
27 |
FOUCRAS M, JULIEN O, MACABIAU C, et al Probability of detection for GNSS signals with sign transitions. IEEE Trans. on Aerospace and Electronic Systems, 2016, 52 (3): 1296- 1308.
doi: 10.1109/TAES.2016.140316 |
28 | FAN B, ZHANG K, QIN Y L, et al Discrete chirp-Fourier transform-based acquisition algorithm for weak global positioning system L5 signals in high dynamic environments. IET Radar, Sonar & Navigation, 2013, 7 (7): 736- 746. |
29 | WU C, XU L P, ZHANG H, et al A block zero-padding method based on DCFT for L1 parameter estimations in weak signal and high dynamic environments. Frontiers of Information Technology & Electronic Engineering, 2015, 16 (9): 796- 804. |
30 |
LI H, CUI X W, LU M Q, et al Dual-folding based rapid search method for long PN-code acquisition. IEEE Trans. on Wireless Communications, 2008, 7 (12): 5286- 5296.
doi: 10.1109/T-WC.2008.071130 |
31 |
LI H, LU M Q, CUI X W, et al Generalized zero-padding scheme for direct GPS P-code acquisition. IEEE Trans. on Wireless Communications, 2009, 8 (6): 2866- 2871.
doi: 10.1109/TWC.2009.081471 |
32 | SIMON M K Probability distributions involving Gaussian random variables. Springer US, 2006. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||