Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (4): 764-778.doi: 10.23919/JSEE.2021.000066
• SENSOR ARRAY SIGNAL PROCESSING AND ITS APPLICATIONS IN 5G/6G • Previous Articles Next Articles
Shuai SHAO1(), Aijun LIU1,*(), Changjun YU1(), Quanrui ZHAO2()
Received:
2021-01-29
Online:
2021-08-18
Published:
2021-09-30
Contact:
Aijun LIU
E-mail:643218186@qq.com;liuaijun@hit.edu.cn;yuchangjun@hit.edu.cn;HIT_zhao@163.com
About author:
Supported by:
Shuai SHAO, Aijun LIU, Changjun YU, Quanrui ZHAO. Polarization quaternion DOA estimation based on vector MISC array[J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 764-778.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
KRIM H, VIBERG M Two decades of array signal processing research: the parametric approach. IEEE Signal Processing Magazine, 1996, 13 (4): 67- 94.
doi: 10.1109/79.526899 |
2 | TREES H L V. Optimum array processing: part IV of detection, estimation, and modulation theory. New Jersey: John Wiley & Sons, 2004. |
3 | WONG K T, ZOLTOWSKI M D Self-initiating music-based direction finding and polarization estimation in spatio-polarizational beamspace. IEEE Trans. on Antennas & Propagation, 2000, 48 (8): 1235- 1245. |
4 |
ZOLTOWSKI M D, WONG K T Esprit-based 2-d direction finding with a sparse uniform array of electromagnetic vector sensors. IEEE Trans. on Signal Processing, 2000, 48 (8): 2195- 2204.
doi: 10.1109/78.852000 |
5 |
NEHORAI A, PALDI E Vector-sensor array processing for electromagnetic source localization. IEEE Trans. on Signal Processing, 1994, 42 (2): 376- 398.
doi: 10.1109/78.275610 |
6 |
YANG M L, DING J A multiscale sparse array of spatially-spread electromagnetic-vector-sensors for direction finding and polarization estimation. IEEE Access, 2018, 6, 9807- 9818.
doi: 10.1109/ACCESS.2018.2799905 |
7 | WU N, QU Z Y Joint estimation of DOA and polarization based on phase difference analysis of electromagnetic vector sensor array. Multidimensional Systems & Signal Processing, 2018, 29 (2): 597- 620. |
8 |
CAO M Y, MAO X P Tensor approach to DOA estimation of coherent signals with electromagnetic vector-sensor array. Sensors, 2018, 18 (12): 4320.
doi: 10.3390/s18124320 |
9 |
ZHENG G Two-dimensional DOA estimation for polarization sensitive array consisted of spatially spread crossed-dipole. IEEE Sensors Journal, 2018, 18 (12): 5014- 5023.
doi: 10.1109/JSEN.2018.2820168 |
10 | SONG H Y, YANG C Y. Vector-sensor array DOA estimation using spatial time-frequency distributions. Proc. of the IEEE International Conference on Consumer Electronics, 2018: 1−2. |
11 |
YANG M, DING J Coprime L-shaped array connected by a triangular spatially-spread electromagnetic vector-sensor for two-dimensional direction of arrival estimation. IET Radar, Sonar & Navigation, 2019, 13 (10): 1609- 1615.
doi: 10.1049/iet-rsn.2018.5536 |
12 |
AHMED T, ZHANG X F, WANG Z, et al Rectangular array of electromagnetic vector sensors: tensor modelling/decomposition and DOA-polarisation estimation. IET Signal Processing, 2019, 13 (7): 689- 699.
doi: 10.1049/iet-spr.2018.5512 |
13 |
SI W J, WANG Y, ZHANG C J Three-parallel co-prime polarization sensitive array for 2-D DOA and polarization estimation via sparse representation. IEEE Access, 2019, 7, 15404- 15413.
doi: 10.1109/ACCESS.2019.2894624 |
14 | SCHUTTE H D, WENZEL J. Hypercomplex numbers in digital signal processing. Proc. of the IEEE International Symposium on Circuits and Systems, 1990: 1557−1560. |
15 |
HAHN S L Multidimensional complex signals with single orthant spectra. Proceedings of the IEEE, 1992, 80 (8): 1287- 1300.
doi: 10.1109/5.158601 |
16 |
BULOW T, SOMMER G Hypercomplex signals—a novel extension of the analytic signal to the multidimensional case. IEEE Trans. on Signal Processing, 2001, 49 (11): 2844- 2852.
doi: 10.1109/78.960432 |
17 |
MIRON S, BIHAN N L Quaternion-music for vector-sensor array processing. IEEE Trans. on Signal Processing, 2006, 54 (4): 1218- 1229.
doi: 10.1109/TSP.2006.870630 |
18 |
ZHAO J C, TAO H H Estimation of DOA and polarization with COLD sensors based on quaternion model. Wuhan University Journal of Natural Sciences, 2017, 22 (4): 361- 368.
doi: 10.1007/s11859-017-1259-9 |
19 |
ZHAO J C, TAO H H Quaternion based joint DOA and polarization parameters estimation with stretched three-component electromagnetic vector sensor array. Journal of Systems Engineering and Electronics, 2017, 28 (1): 1- 9.
doi: 10.21629/JSEE.2017.01.01 |
20 | ZHU Q, ZHENG G, PENG J Q. DOA estimation for electromagnetic vector-sensor array based on biquaternion. Proc. of the 3rd IEEE International Conference on Electronic Information and Communication Technology, 2020: 509−513. |
21 | CHEN H, WANG W, LIU W Augmented quaternion ESPRIT-type DOA estimation with a crossed-dipole array. IEEE Communications Letters, 2019, 24 (3): 548- 552. |
22 |
ROY R, KAILATH T Esprit-estimation of signal parameters via rotational invariance techniques. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1989, 37 (7): 984- 995.
doi: 10.1109/29.32276 |
23 |
BOUDAHER E, AHMAD F Mutual coupling effect and compensation in nonuniform arrays for direction-of-arrival estimation. Digital Signal Processing, 2017, 61, 3- 14.
doi: 10.1016/j.dsp.2016.06.005 |
24 |
PAL P, VAIDYANATHAN P P Nested arrays: a novel approach to array processing with enhanced degrees of freedom. IEEE Trans. on Signal Processing, 2010, 58 (8): 4167- 4181.
doi: 10.1109/TSP.2010.2049264 |
25 | VAIDYANATHAN P P, PAL P Sparse sensing with co-prime samplers and arrays. IEEE Trans. on Signal Processing, 2010, 59 (2): 573- 586. |
26 |
YANG M L, SUN L Improved nested array with hole-free DOA and more degrees of freedom. Electronics Letters, 2016, 52 (25): 2068- 2070.
doi: 10.1049/el.2016.3197 |
27 | PAL P, VAIDYANATHAN P P. Coprime sampling and the music algorithm. Proc. of the Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop, 2011: 289−294. |
28 |
QIN S, ZHANG Y D Generalized coprime array configurations for direction-of-arrival estimation. IEEE Trans. on Signal Processing, 2015, 63 (6): 1377- 1390.
doi: 10.1109/TSP.2015.2393838 |
29 |
ZHENG Z, WANG W Q MISC array: a new sparse array design achieving increased degrees of freedom and reduced mutual coupling effect. IEEE Trans. on Signal Processing, 2019, 67 (7): 1728- 1741.
doi: 10.1109/TSP.2019.2897954 |
30 | KANTOR I L. Hypercomplex numbers: an elementary introduction to algebras. Berlin: Springer, 1989. |
31 | WARD J P. Quaternions and cayley numbers: algebra and applications. Berlin: Springer Science & Business Media, 1997. |
32 | LEE H C Eigenvalues and canonical forms of matrices with quaternion coefficients. Proceedings. of the Royal Irish Academy, 1948, 52, 253- 260. |
33 |
HOCTOR R T, KASSAM S A The unifying role of the coarray in aperture synthesis for coherent and incoherent imaging. Proceedings. of the IEEE, 1990, 78 (4): 735- 752.
doi: 10.1109/5.54811 |
34 |
LIU C L, VAIDYANATHAN P P Super nested arrays: linear sparse arrays with reduced mutual coupling—part I: fundamentals. IEEE Trans. on Signal Processing, 2016, 64 (15): 3997- 4012.
doi: 10.1109/TSP.2016.2558159 |
35 |
LIU J Y, ZHANG Y M Augmented nested arrays with enhanced DOF and reduced mutual coupling. IEEE Trans. on Signal Processing, 2017, 65 (21): 5549- 5563.
doi: 10.1109/TSP.2017.2736493 |
36 |
FRIEDLANDER B, WEISS A J Direction finding in the presence of mutual coupling. IEEE Trans. on Antennas and Propagation, 1991, 39 (3): 273- 284.
doi: 10.1109/8.76322 |
37 |
LIU C L, VAIDYANATHAN P P Hourglass arrays and other novel 2-D sparse arrays with reduced mutual coupling. IEEE Trans. on Signal Processing, 2017, 65 (13): 3369- 3383.
doi: 10.1109/TSP.2017.2690390 |
38 |
MUNIER J, DELISLE G Y Spatial analysis using new properties of the cross-spectral matrix. IEEE Trans. on Signal Processing, 1991, 39 (3): 746- 749.
doi: 10.1109/78.80863 |
39 |
LEO S D, SCOLARICI G Quaternionic eigenvalue problem. Journal of Mathematical Physics, 2002, 43 (11): 5815- 5829.
doi: 10.1063/1.1511789 |
40 | BIHAN N L, MARS J Singular value decomposition of quaternion matrices: a new tool for vector-sensor signal processing. Signal Processing, 2008, 84 (7): 1177- 1199. |
41 | BIHAN N L, SANGWINE S J. Quaternion principal component analysis of color images. Proc. of the International Conference on Image Processing, 2003: I-809. |
42 | ZHANG F Quaternions and matrices of quaternions. Linear Algebra and its Applications, 1997, 251 (2): 21- 57. |
43 |
WOOD R M W Quaternionic eigenvalues. Bulletin of the London Mathematical Society, 1985, 17 (2): 137- 138.
doi: 10.1112/blms/17.2.137 |
44 |
GERSTNER A B, BYERS R A quaternion QR algorithm. Numerische Mathematik, 1989, 55 (1): 83- 95.
doi: 10.1007/BF01395873 |
[1] | Luo CHEN, Xiangrui DAI, Xiaofei ZHANG. Joint angle and frequency estimation for linear array: an extended DOA-matrix method [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 887-895. |
[2] | Shenghua WANG, Yunhe CAO, Yutao LIU. A method of Robust low-angle target height and compound reflection coefficient joint estimation [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 322-329. |
[3] | Ping LI, Jianfeng LI, Gaofeng ZHAO. Low complexity DOA estimation for massive UCA with single snapshot [J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 22-27. |
[4] | Junpeng SHI, Fangqing WEN, Yongxiang LIU, Tianpeng LIU, Zhen LIU. High-order extended coprime array design for direction of arrival estimation [J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 748-755. |
[5] | Yanan DU, Hongyuan GAO, Menghan CHEN. Direction of arrival estimation method based on quantum electromagnetic field optimization in the impulse noise [J]. Journal of Systems Engineering and Electronics, 2021, 32(3): 527-537. |
[6] | Chenghu CAO, Yongbo ZHAO, Xiaojiao PANG, Baoqing XU, Sheng CHEN. A method based on Chinese remainder theorem with all phase DFT for DOA estimation in sparse array [J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 1-11. |
[7] | Kunlai XIONG, Zhangmeng LIU, Pei WANG. SAGE-based algorithm for DOA estimation and array calibration in the presence of sensor location errors [J]. Journal of Systems Engineering and Electronics, 2019, 30(6): 1074-1080. |
[8] | Shun He, Zhiwei Yang, and Guisheng Liao. DOA estimation of wideband signals based on iterative spectral reconstruction [J]. Journal of Systems Engineering and Electronics, 2017, 28(6): 1039-1045. |
[9] | Jiaqi Zhen and Yong Liu. DOA estimation for mixed signals with gain-phase [J]. Journal of Systems Engineering and Electronics, 2017, 28(6): 1046-1056. |
[10] | Jichao Zhao and Haihong Tao. Quaternion based joint DOA and polarization parameters estimation with stretched three-component electromagnetic vector sensor array [J]. Systems Engineering and Electronics, 2017, 28(1): 1-. |
[11] | Jingjing Cai, Dan Bao, and Peng Li. DOA estimation via sparse recovering from the smoothed covariance vector [J]. Systems Engineering and Electronics, 2016, 27(3): 555-561. |
[12] | Yi Shen, Yan Jing, and Naizhang Feng. Construction of deterministic sensing matrix and its application to DOA estimation [J]. Systems Engineering and Electronics, 2016, 27(1): 10-. |
[13] | Jiaqi Zhen and Zhifang Wang. DOA estimation method for wideband signals by block sparse reconstruction [J]. Systems Engineering and Electronics, 2016, 27(1): 20-. |
[14] | Lanmei Wang, Zhihai Chen, Guibao Wang, and Xuan Rao. Estimating DOA and polarization with spatially spread loop and dipole pair array [J]. Journal of Systems Engineering and Electronics, 2015, 26(1): 44-. |
[15] | Yan Jing, Naizhang Feng, and Yi Shen. Modified MUSIC estimation for correlated signals with compressive sampling arrays [J]. Journal of Systems Engineering and Electronics, 2014, 25(5): 755-759. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||