Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (3): 631-641.doi: 10.23919/JSEE.2021.000054
• SYSTEMS ENGINEERING • Previous Articles Next Articles
Ning MA1,*(), Jimin YE1(), Junyuan WANG2()
Received:
2020-06-20
Online:
2021-06-18
Published:
2021-07-26
Contact:
Ning MA
E-mail:chumnxi@163.com;jmye@mail.xidian.edu.cn;junyuanyc@163.com
About author:
Supported by:
Ning MA, Jimin YE, Junyuan WANG. A generalized geometric process based repairable system model with bivariate policy[J]. Journal of Systems Engineering and Electronics, 2021, 32(3): 631-641.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Optimal value (× ${{ {{{10}}^{{4}}}}}$ ) of ${{ C\left( {{{N}}{{,T}}} \right)}}$ on different ${{q}}$ and ${{\alpha }}$ "
q | | | |||||
| | | | | | ||
q=0.1 | 6 | 22 | ?1.5700 | 1 | 2 | ?0.5119 | |
q=0.2 | 7 | 26 | ?0.8441 | 3 | 18 | ?1.2321 | |
q=0.3 | 2 | 7 | ?0.9706 | 2 | 7 | ?0.9706 | |
q=0.4 | 3 | 10 | ?7.8686 | 4 | 21 | ?6.0050 | |
q=0.5 | 5 | 19 | ?5.9212 | 4 | 19 | ?1.6152 | |
q=0.6 | 5 | 18 | ?3.4665 | 14 | 20 | ?1.2975 | |
q=0.7 | 7 | 31 | ?5.3722 | 6 | 30 | ?2.4538 | |
q=0.8 | 4 | 11 | ?9.0739 | 5 | 19 | ?20.7206 | |
q=0.9 | 8 | 37 | ?54.4648 | 3 | 7 | ?57.3538 | |
q=1 | 4 | 10 | ?7.8596 | 4 | 10 | ?7.8596 |
Table 2
Some results of ${{C\left( {{{N,T}}} \right)}}$ with ${{q = 0.8,\; \alpha = 0.5}}$ "
N | T | ||||||||
5 | 7 | 9 | 11 | 13 | 20 | 30 | 40 | 50 | |
1 | ?0.0633 | ?0.0525 | ?0.0477 | ?0.0450 | ?0.0432 | ?0.0402 | ?0.0384 | ?0.0376 | ?0.0371 |
2 | ?0.2951 | ?0.1053 | ?0.0750 | ?0.0626 | ?0.0559 | ?0.0457 | ?0.0409 | ?0.0387 | ?0.0375 |
3 | 0.1188 | 2.3626 | ?0.2624 | ?0.1137 | ?0.0856 | ?0.0559 | ?0.0451 | ?0.0408 | ?0.0385 |
4 | 0.0488 | 0.0878 | 0.2070 | ?9.0739 | ?0.2520 | 0.0970 | ?0.0524 | ?0.0441 | ?0.0401 |
5 | 0.0305 | 0.0427 | 0.0618 | 0.0962 | 0.1759 | ?0.1781 | ?0.0682 | ?0.0501 | ?0.0426 |
6 | 0.0223 | 0.0277 | 0.0346 | 0.0440 | 0.0573 | 0.2652 | ?0.1193 | ?0.0621 | ?0.0466 |
7 | 0.0178 | 0.0205 | 0.0236 | 0.0275 | 0.0322 | 0.0630 | 2.9528 | ?0.0935 | ?0.0528 |
8 | 0.0151 | 0.0164 | 0.0180 | 0.0197 | 0.0217 | 0.0326 | 0.0834 | ?0.2612 | ?0.0576 |
9 | 0.0133 | 0.0139 | 0.0146 | 0.0153 | 0.0162 | 0.0205 | 0.0366 | 0.4738 | ?0.0355 |
10 | 0.0119 | 0.0120 | 0.0121 | 0.0122 | 0.0123 | 0.0130 | 0.0163 | ?0.0014 | 0.0078 |
11 | 0.0104 | 0.0099 | 0.0092 | 0.0083 | 0.0072 | ?0.0025 | 0.0449 | 0.0239 | 0.0205 |
12 | 0.0072 | 0.0041 | ?0.0015 | ?0.0142 | ?0.0732 | 0.0353 | 0.0246 | 0.0222 | 0.0211 |
13 | ?0.0524 | 0.0554 | 0.0337 | 0.0283 | 0.0259 | 0.0227 | 0.0213 | 0.0208 | 0.0205 |
14 | 0.0241 | 0.0225 | 0.0217 | 0.0213 | 0.0211 | 0.0206 | 0.0203 | 0.0202 | 0.0201 |
15 | 0.0205 | 0.0203 | 0.0202 | 0.0202 | 0.0201 | 0.0201 | 0.0200 | 0.0200 | 0.0200 |
Table 3
Some results of ${{C}}\left( {{{N,T}}} \right)$ with ${{q = 1}}$ "
N | T | |||||||
5 | 9 | 10 | 11 | 21 | 31 | 41 | 50 | |
1 | ?0.0633 | ?0.0477 | ?0.0462 | ?0.0450 | ?0.0399 | ?0.0383 | ?0.0375 | ?0.0371 |
2 | ?0.1998 | ?0.0706 | ?0.0646 | ?0.0603 | ?0.0451 | ?0.0411 | ?0.0392 | ?0.0382 |
3 | 0.1717 | ?0.1516 | ?0.1179 | ?0.0991 | ?0.0534 | ?0.0450 | ?0.0415 | ?0.0397 |
4 | 0.0581 | 0.4344 | ?7.8596 | ?0.4463 | ?0.0704 | ?0.0515 | ?0.0448 | ?0.0416 |
5 | 0.0343 | 0.0777 | 0.1001 | 0.1347 | ?0.1228 | ?0.0644 | ?0.0504 | ?0.0446 |
6 | 0.0241 | 0.0398 | 0.0455 | 0.0523 | 12.8052 | ?0.0995 | ?0.0612 | ?0.0494 |
7 | 0.0187 | 0.0258 | 0.0281 | 0.0306 | 0.0909 | ?0.4099 | ?0.0864 | ?0.0568 |
8 | 0.0154 | 0.0189 | 0.0199 | 0.0210 | 0.0400 | 0.1291 | ?0.1704 | ?0.0630 |
9 | 0.0133 | 0.0148 | 0.0153 | 0.0158 | 0.0233 | 0.0478 | ?0.3597 | ?0.0390 |
10 | 0.0117 | 0.0119 | 0.0120 | 0.0121 | 0.0133 | 0.0203 | 0.0026 | 0.0073 |
11 | 0.0100 | 0.0084 | 0.0079 | 0.0073 | ?0.0189 | 0.0326 | 0.0226 | 0.0203 |
12 | 0.0060 | ?0.0072 | ?0.0165 | ?0.0366 | 0.0300 | 0.0237 | 0.0218 | 0.0210 |
13 | ?0.4664 | 0.0307 | 0.0284 | 0.0269 | 0.0222 | 0.0211 | 0.0207 | 0.0204 |
14 | 0.0237 | 0.0216 | 0.0214 | 0.0212 | 0.0205 | 0.0203 | 0.0202 | 0.0201 |
15 | 0.0205 | 0.0202 | 0.0202 | 0.0202 | 0.0201 | 0.0200 | 0.0200 | 0.0200 |
Table 4
Random change of the means of ${{{{{X}}_{{n}}}}}$ , ${{{{{Y}}_{{n}}} }}$ and ${{{{{Z}}_{{n}}}}}$ "
Expectation | n | |||||||
1 | 2 | 3 | 4 | 6 | 8 | 9 | 10 | |
| 300.0000 | 285.7143 | 259.7403 | 225.8611 | 150.5471 | 85.7972 | 61.2837 | 42.2646 |
| 2.0000 | 2.1503 | 2.3392 | 2.7520 | 4.5866 | 10.0805 | 16.8006 | 30.5470 |
| 4.0000 | 4.3011 | 5.0013 | 6.3307 | 13.5271 | 45.7307 | 103.933 3 | 280.9090 |
1 | ASCHER H, FEINGOLD H. Repairable systems reliability: modeling, inference, misconceptions and their causes. New York: Marcel Dekker, Inc., 1984. |
2 | BARLOW R E, PROSCHAN F. Mathematical theory of reliability. New York: Wiley, 1965. |
3 | BARLOW R E, HUNTER L C, PROSCHAN F Optimum redundancy when components are subject to two kinds of failure. Journal of the Society for Industrial & Applied Mathematics, 1963, 11 (1): 64- 73. |
4 |
NAKAGAWA T Periodic inspection policy with preventive maintenance. Naval Research Logistics Quarterly, 1984, 31 (1): 33- 40.
doi: 10.1002/nav.3800310106 |
5 |
VAURIO J K Availability and cost functions for periodically inspected preventively maintained units. Reliability Engineering and System Safety, 1999, 63 (2): 133- 140.
doi: 10.1016/S0951-8320(98)00030-1 |
6 |
CHENG G Q, LI L A geometric process repair model with inspections and its optimization. International Journal of Systems Science, 2012, 43 (9): 1650- 1655.
doi: 10.1080/00207721.2010.549586 |
7 |
LAM Y A note on the optimal replacement problem. Advances in Applied Probability, 1988, 20 (2): 479- 482.
doi: 10.2307/1427402 |
8 |
LAM Y Geometric processes and replacement problem. Acta Mathematicae Applicatae Sinica, 1988, 4 (4): 366- 377.
doi: 10.1007/BF02007241 |
9 |
LAM Y, ZHU L X, CHAN J S K, et al Analysis of data from a series of events by a geometric process model. Acta Mathematicae Applicatae Sinica (English Series), 2004, 20 (2): 263- 282.
doi: 10.1007/s10255-004-0167-x |
10 |
WANG G J, YAM R C M Generalized geometric process and its application in maintenance problems. Applied Mathematical Modelling, 2017, 49, 554- 567.
doi: 10.1016/j.apm.2017.05.024 |
11 |
WANG G J, ZHANG Y L, YAM R C M Preventive maintenance models based on the generalized geometric process. IEEE Trans. on Reliability, 2017, 66 (4): 1380- 1388.
doi: 10.1109/TR.2017.2738020 |
12 |
WANG W An inspection model for a process with two types of inspections and repairs. Reliability Engineering and System Safety, 2009, 94 (2): 526- 533.
doi: 10.1016/j.ress.2008.06.010 |
13 |
NAKAGAWA T, MIZUTANI S, CHEN M A summary of periodic and random inspection policies. Reliability Engineering and System Safety, 2010, 95 (8): 906- 911.
doi: 10.1016/j.ress.2010.03.012 |
14 | CHEN M C, QIAN C H, NAKAGAWA T Periodic and random inspection policies for computer systems. Communications in Computer and Information Science, 2011, 257, 346- 353. |
15 | CHEN T, XIE J W, DI P, et al Reliability analysis of multi-state cold standby system with two competing failures. Acta Aeronautica et Astronautica Sinica, 2019, 40 (3): 110- 125. |
16 | SHEU S H, TSAI H N, HSU T S, et al Optimal number of minimal repairs before replacement of a deteriorating system with inspections. International Journal of Systems Science, 2015, 46 (8): 1367- 1379. |
17 | SHEU S H, TSAI H N, HSU T S, et al An extended optimal replacement model for a deteriorating system with inspections. Reliability Engineering and System Safety, 2015, 139 (3): 33- 49. |
18 | WANG Q, CHENG Z H, BAI Y S, et al Optimization of product warranty strategy under preventive maintenance. Mathematics in Practice and Theory, 2020, 50 (4): 80- 87. |
19 | ZHU X Application of fault diagnosis and predictive maintenance in intelligent manufacturing. Process Automation Instrumentation, 2019, 40 (7): 66- 69. |
20 | CAO F, SHANGGUAN L F, CHEN X F Common faults and preventive maintenance of ventilator. World Latest Medicine, 2019, 19 (20): 254- 255. |
21 | LI H B Research on common fault maintenance and preventive maintenance of medical equipment. Science and Technology Innovation Herald, 2019, 16 (27): 110- 111. |
22 | GAO Q Q, YUE D Q Optimal maintenance strategy for repairable geometric process model of repair equipment. System Engineering−Theory and Practice, 2018, 38 (4): 1043- 1051. |
23 |
WU D, PENG R, WU S M A review of the extensions of the geometric process, applications, and challenges. Quality and Reliability Engineering International, 2020, 36 (2): 436- 446.
doi: 10.1002/qre.2587 |
24 |
WANG J Y, YE J M Extended repair model for a deteriorating system with its repairman having vacations. Optimization Letters, 2020, 14 (7): 1887- 1905.
doi: 10.1007/s11590-019-01495-w |
25 | WANG J Y, YE J M, WANG L. Extended age maintenance models and its optimization for series and parallel systems. Annals of Operations Research, 2019. https://doi.org/10.1007/s10479-019-03355-3. |
26 | WANG J Y, YE J M, MA Q R, et al. An extended geometric process repairable model with its repairman having vacation. Annals of Operations Research, 2019. https://doi.org/10.1007/s10479-019-03187-1. |
27 |
WANG J Y, YE J M, XIE P F New repairable system model with two types repair based on extended geometric process. Journal of Systems Engineering and Electronics, 2019, 30 (3): 613- 623.
doi: 10.21629/JSEE.2019.03.18 |
28 | WANG G J, ZHANG Y L Geometric process model for a system with inspections and preventive repair. Computers & Industrial Engineering, 2014, 75, 13- 19. |
29 | ROSS S M. Stochastic processes. 2nd ed. New York: Wiley, 1996. |
30 | ZHANG Y L A bivariate optimal replacement policy for a repairable system. Journal of the Operational Research Society, 2002, 31 (4): 1123- 1127. |
[1] | Bing LIN, Yuchen LIN, Rohit BHATNAGAR. Optimal policy for controlling two-server queueing systems with jockeying [J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 144-155. |
[2] | Junyuan WANG, Jimin YE, Pengfei XIE. New repairable system model with two types repair based on extended geometric process [J]. Journal of Systems Engineering and Electronics, 2019, 30(3): 613-623. |
[3] | Lijun Shang and Zhiqiang Cai. Optimal replacement policy of products with repair-cost threshold after the extended warranty [J]. Systems Engineering and Electronics, 2017, 28(4): 725-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||