Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (3): 596-606.doi: 10.23919/JSEE.2021.000051
• SYSTEMS ENGINEERING • Previous Articles Next Articles
Yaowei ZHU1(), Zhaobin XU1,*(), Xiaojun JIN2(), Xiaoxu GUO1(), Zhonghe JIN2()
Received:
2020-03-22
Online:
2021-06-18
Published:
2021-07-26
Contact:
Zhaobin XU
E-mail:zhuyaowei@zju.edu.cn;zjuxzb@zju.edu.cn;axemaster@zju.edu.cn;guoxx@zju.edu.cn;jinzh@zju.edu.cn
About author:
Supported by:
Yaowei ZHU, Zhaobin XU, Xiaojun JIN, Xiaoxu GUO, Zhonghe JIN. Integrated method for measuring distance and time difference between small satellites[J]. Journal of Systems Engineering and Electronics, 2021, 32(3): 596-606.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
POGHOSYAN A, GOLKAR A CubeSat evolution: analyzing CubeSat capabilities for conducting science missions. Progress in Aerospace Sciences, 2017, 88, 59- 83.
doi: 10.1016/j.paerosci.2016.11.002 |
2 |
DAVOLI F, KOUROGIORGAS C, MARCHESE M, et al Small satellites and CubeSats: survey of structures, architectures, and protocols. International Journal of Satellite Communications and Networking, 2019, 37 (4): 343- 359.
doi: 10.1002/sat.1277 |
3 |
RADHAKRISHNAN R, EDMONSON W W, AFGHAH F, et al Survey of inter-satellite communication for small satellite systems: physical layer to network layer view. IEEE Communications Surveys and Tutorials, 2016, 18 (4): 2442- 2473.
doi: 10.1109/COMST.2016.2564990 |
4 | BANDYOPADHYAY S, SUBRAMANIAN G P, FOUST R, et al. A review of impending small satellite formation flying missions. Proc. of the 53rd AIAA Aerospace Sciences Meeting, 2015: 1−17. |
5 |
ZHANG H, GURFIL P Distributed control for satellite cluster flight under different communication topologies. Journal of Guidance, Control, and Dynamics, 2016, 39 (3): 617- 627.
doi: 10.2514/1.G001355 |
6 | RUIZ-DE-AZUA J A, CALVERAS A, GOLKAR A, et al. Proof-of-concept of a federated satellite system between two 6-unit CubeSats for distributed earth observation satellite systems. Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2019: 8871–8874. |
7 | BOUWMEESTER J, GUO J Survey of worldwide pico- and nanosatellite missions, distributions and subsystem technology. Acta Astronautica, 2010, 67 (7): 854- 862. |
8 | WANG D W, WU B L, POH E K. Satellite formation flying. Singapore: Springer, 2017. |
9 | NARYTNIK T, RASSAMAKIN B, PRISYAZHNY V, et al. Coverage area formation for a low-orbit broadband access system with distributed satellites. Proc. of the International Conference on Information and Telecommunication Technologies and Radio Electronics, 2018: 1–4. |
10 | WAN B, CHEN H, WANG W Y, et al. Collision avoidance engineering design for satellite formation flying. Proc. of the IEEE CSAA Guidance, Navigation and Control Conference, 2018: 1–6. |
11 |
XU M, HE Y C, YU K A software architecture design for autonomous formation flying control. IEEE Trans. on Aerospace and Electronic Systems, 2017, 53 (6): 2950- 2962.
doi: 10.1109/TAES.2017.2721658 |
12 | MOREIRA A, KRIEGER G, FIEDLER H, et al. TanDEM-X: a satellite formation for high resolution radar interferometry. Proc. of the 57th International Astronautical Congress, 2006: 1−8. |
13 | ARDAENS J S, KAHLE R, SCHULZE D In-flight performance validation of the TanDEM-X autonomous formation flying system. International Journal of Space Science and Engineering, 2014, 2 (2): 1- 11. |
14 | TAPLEY B D, BETTADPUR S, WATKINS M, et al The gravity recovery and climate experiment: mission overview and early results. Geophysical Research Letters, 2004, 31 (9): 1- 4. |
15 |
KIM J, TAPLEY B D Simulation of dual one-way ranging measurements. Journal of Spacecraft and Rockets, 2003, 40 (3): 419- 425.
doi: 10.2514/2.3962 |
16 | HOFFMAN T L. GRAIL: gravity mapping the moon. Proc. of the IEEE Aerospace Conference, 2009: 1–8. |
17 | ENZER D G, WANG R T, OUDRHIRI K, et al. In situ measurements of USO performance in space using the twin GRAIL spacecraft. Proc. of the IEEE International Frequency Control Symposium, 2012: 1–5. |
18 |
KIRCHNER D Two-way time transfer via communication satellites. Proceedings of the IEEE, 1991, 79 (7): 983- 990.
doi: 10.1109/5.84975 |
19 | PAN L J, JIANG T, ZHOU L Y, et al. A research on high-precision time-synchronization and ranging system between satellites. Proc. of the International Conference on Microwave and Millimeter Wave Technology, 2008: 926–929. |
20 | MA H J, WU H B, WU J F, et al. Design and implementation of dual one-way precise ranging and time synchronization system. Proc. of the Joint European Frequency and Time Forum & International Frequency Control Symposium, 2013: 831–834. |
21 |
XU J L, ZHANG C J, WANG C H, et al Approach to inter-satellite time synchronization for micro-satellite cluster. Journal of Systems Engineering and Electronics, 2018, 29 (4): 805- 815.
doi: 10.21629/JSEE.2018.04.15 |
22 | BERTIGER W, DUNN C, HARRIS I, et al. Relative time and frequency alignment between two low earth orbiters, GRACE. Proc. of the IEEE International Frequency Control Sympposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, 2003: 273–279. |
23 | KIM J. Measurement time synchronization for a satellite-to-satellite ranging system. Proc. of the International Conference on Control, Automation and Systems, 2007: 190–194. |
24 | ZHANG V, PARKER T E, ACHKAR J, et al. Two-way satellite time and frequency transfer using 1 MChips/s codes. Proc. of the 41st Annual Precise Time and Time Interval Meeting, 2009: 371−381. |
25 | KRUIZINGA G L H, BERTIGER W I, HARVEY N Timing of science data for the GRAIL mission, JPL D-75620. Pasadena: Jet Propulsion Laboratory, 2013. |
26 | CCSDS 414.0-G-2. Pseudo-noise (PN) ranging systems. Washington, DC: Management Council of Consultative Committee for Space Data Systems, 2014: 1−92. |
27 |
JIN X J, ZHANG W, MO S M, et al Optimal regenerative PN code tracking based on non-commensurate sampling and double-loop structure. Electronics Letters, 2019, 55 (23): 1254- 1255.
doi: 10.1049/el.2019.2397 |
28 | MA H J, YAN F F, HOU Z J. Application of algorithm of smoothing pseudo-range with carrier phase to DRTS system. Proc. of the International Conference on Computer Networks and Communication Technology, 2016: 209–213. |
29 | WANG B The application of residues theorem in the complex pseudorandom code range detection system. Radio Eegineering of China, 2004, 34 (8): 23- 24. |
30 | JIN X J. Study on regenerative pseudo noise ranging and its implementation. Hangzhou, China: Zhejiang University, 2007. (in Chinese) |
31 | MENG Z M, XU Z B, JIN X J, et al On-orbit delay calibration of inter-satellite ranging system and its application for micro-satellite. Journal of Astronautics, 2016, 37 (10): 1239- 1245. |
32 |
MERCK P, ACHKAR J Design of a Ku band delay difference calibration device for TWSTFT station. IEEE Trans. on Instrumentation and Measurement, 2005, 54 (2): 814- 818.
doi: 10.1109/TIM.2004.843328 |
33 | HAHN J, BEDRICH S. Ultra-precise clock synchronization of remote atomic clocks with PRARE onboard ERS-2. Proc. of the International Symposium on Spread Spectrum Techniques and Applications, 1996, 2: 867–871. |
34 | ALBASHIR A, SAMI K A, AHMEDELTIGANI M. Enhancing the accuracy of GPS point positioning by modeling the ionospheric propagation delay. Proc. of the International Conference on Computer, Control, Electrical, and Electronics Engineering, 2018: 1–7. |
35 |
MALLIKA I L, RATNAM D V, RAMAN S, et al A new ionospheric model for single frequency GNSS user applications using Klobuchar model driven by auto regressive moving average (SAKARMA) method over Indian region. IEEE Access, 2020, 8, 54535- 54553.
doi: 10.1109/ACCESS.2020.2981365 |
36 | LI D D, XU L X, LI B, et al. Analysis of ionospheric delay correction methods for BeiDou navigation satellite system. Proc. of the 13th IEEE International Conference on Electronic Measurement & Instruments, 2017: 603–608. |
[1] | Jiajun HUANG, Chaojie ZHANG, Xiaojun JIN. Approach to MAI cancellation for micro-satellite clusters [J]. Journal of Systems Engineering and Electronics, 2019, 30(5): 823-830. |
[2] | Jiuling XU, Chaojie ZHANG, Chunhui WANG, Xiaojun JIN. Approach to inter-satellite time synchronization for micro-satellite cluster [J]. Journal of Systems Engineering and Electronics, 2018, 29(4): 805-815. |
[3] | Huang Yulin, Yang Jianyu, Wu Junjie & Xiong Jintao. Precise time frequency synchronization technology for bistatic radar [J]. Journal of Systems Engineering and Electronics, 2008, 19(5): 929-933. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||