Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (3): 566-572.doi: 10.23919/JSEE.2021.000048
• DEFENCE ELECTRONICS TECHNOLOGY • Previous Articles Next Articles
Tao WAN*(), Kaili JIANG(), Jingyi LIAO(), Tingting JIA(), Bin TANG()
Received:
2020-07-11
Online:
2021-06-18
Published:
2021-07-26
Contact:
Tao WAN
E-mail:taowan.uestc0939@foxmail.com;jiangkelly@foxmail.com;LiaoJingyi@std.uestc.edu.cn;18804431003@163.com;bint@uestc.edu.cn
About author:
Supported by:
Tao WAN, Kaili JIANG, Jingyi LIAO, Tingting JIA, Bin TANG. Research on LPI radar signal detection and parameter estimation technology[J]. Journal of Systems Engineering and Electronics, 2021, 32(3): 566-572.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | PACE P E. Detecting and classifying low probability of intercept radar. Norwood: Artech House, 2009. |
2 | WILEY R G. ELINT: the interception and analysis of radar signals. Fitchburg: Artech House, 2006. |
3 | KONOPKO K A detection algorithm of LPI radar signals. Proc. of the Signal Processing Algorithms Architectures Arrangements and Applications, 2007, 103- 108. |
4 |
GEROLEO F G, BRANDT-PEARCE M Detection and estimation of LFMCW radar signals. IEEE Trans. on Aerospace and Electronic Systems, 2012, 48 (1): 405- 418.
doi: 10.1109/TAES.2012.6129644 |
5 |
LIU Y J, XIAO P, WU H C, et al LPI radar signal detection based on radial integration of Choi-Williams time-frequency image. Journal of Systems Engineering and Electronics, 2015, 26 (5): 973- 981.
doi: 10.1109/JSEE.2015.00106 |
6 |
VLOK J D, OLIVIER J C Non-cooperative detection of weak spread-spectrum signals in additive white Gaussian noise. IET Communications, 2012, 6 (16): 2513- 2524.
doi: 10.1049/iet-com.2011.0614 |
7 |
YANG C Z, XIONG Z W, GUO Y, et al LPI radar signal detection based on the combination of FFT and segmented autocorrelation plus PAHT. Journal of Systems Engineering and Electronics, 2017, 28 (5): 890- 899.
doi: 10.21629/JSEE.2017.05.08 |
8 |
LACASA L, LUQUE B, BALLESTEROS F, et al From time series to complex networks: the visibility graph. Proceedings of the National Academy of Sciences, 2008, 105 (13): 4972- 4975.
doi: 10.1073/pnas.0709247105 |
9 | POOR H V. An introduction to signal detection and estimation. Berlin: Springer Science & Business Media, 2013. |
10 |
KO C C, ZHI W, CHIN F ML-based frequency estimation and synchronization of frequency hopping signals. IEEE Trans. on Signal Processing, 2005, 53 (2): 403- 410.
doi: 10.1109/TSP.2004.840703 |
11 | ZHAO L F, WANG L, BI G A, et al Robust frequency-hopping spectrum estimation based on sparse Bayesian method. IEEE Trans. on Wireless Communications, 2014, 14 (2): 781- 793. |
12 |
KHAN N A, BOASHASH B Multicomponent instantaneous frequency estimation using locally adaptive directional time frequency distributions. International Journal of Adaptive Control and Signal Processing, 2016, 30 (3): 429- 442.
doi: 10.1002/acs.2583 |
13 |
DONG X J, CHEN S Q, XING G P, et al Doppler frequency estimation by parameterized time-frequency transform and phase compensation technique. IEEE Sensors Journal, 2018, 18 (9): 3734- 3744.
doi: 10.1109/JSEN.2018.2812848 |
14 |
BEY A E, LINH-TRUNG N, ABED-MERAIM K, et al Underdetermined blind separation of nondisjoint sources in the time-frequency domain. IEEE Trans. on Signal Processing, 2007, 55 (3): 897- 907.
doi: 10.1109/TSP.2006.888877 |
15 |
KHAN N A, MOHAMMADI M, DJUROVIC I A modified Viterbi algorithm-based IF estimation algorithm for adaptive directional time-frequency distributions. Circuits, Systems, and Signal Processing, 2019, 38 (5): 2227- 2244.
doi: 10.1007/s00034-018-0960-z |
16 | ZENG X D, ZENG D G, TANG B Parameter estimation approach of 2FSK/BPSK hybrid signal based on ZAM-GTFR. Electronic Information Warfare Technology, 2011, 26 (2): 9- 14. |
17 | SONG J, LIU Y, WANG X D The recognition and parameter estimation of hybrid modulation signal combined with FSK and BPSK. Journal of Electronics Information Technology, 2013, 35 (12): 2868- 2873. |
18 | STANKOVIC L A measure of some time-frequency distributions concentration. Signal Processing, 2001, 81 (2): 621- 631. |
19 |
JIANG Q, SUTER B W Instantaneous frequency estimation based on synchrosqueezing wavelet transform. Signal Processing, 2017, 138, 167- 181.
doi: 10.1016/j.sigpro.2017.03.007 |
20 |
KWOK H K, JONES D. L Improved instantaneous frequency estimation using an adaptive short-time Fourier transform. IEEE Trans. on Signal Processing, 2000, 48 (10): 2964- 2972.
doi: 10.1109/78.869059 |
21 |
OBERLIN T, MEIGNEN S, PERRIER V Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations. IEEE Trans. on Signal Processing, 2015, 63 (5): 1335- 1344.
doi: 10.1109/TSP.2015.2391077 |
22 |
FOURER D, AUGER F, CZARNECKI K, et al Chirp rate and instantaneous frequency estimation: application to recursive vertical synchrosqueezing. IEEE Signal Processing Letters, 2017, 24 (11): 1724- 1728.
doi: 10.1109/LSP.2017.2714578 |
23 |
MOHAMMADI M, POUYAN A A, KHAN N A, et al Locally optimized adaptive directional time-frequency distributions. Circuits, Systems, and Signal Processing, 2018, 37 (8): 3154- 3174.
doi: 10.1007/s00034-018-0802-z |
24 |
BOASHASH B, OUELHA S An improved design of high-resolution quadratic time-frequency distributions for the analysis of nonstationary multicomponent signals using directional compact kernels. IEEE Trans. on Signal Processing, 2017, 65 (10): 2701- 2713.
doi: 10.1109/TSP.2017.2669899 |
25 |
ZHONG J G, HUANG Y Time-frequency representation based on an adaptive short-time Fourier transform. IEEE Trans. on Signal Processing, 2010, 58 (10): 5118- 5128.
doi: 10.1109/TSP.2010.2053028 |
26 |
ABDOUSH Y, POJANI G, CORAZZA G E Adaptive instantaneous frequency estimation of multicomponent signals based on linear time-frequency transforms. IEEE Trans. on Signal Processing, 2019, 67 (12): 3100- 3112.
doi: 10.1109/TSP.2019.2912132 |
27 |
WAN T, FU X Y, JIANG K L, et al Radar antenna scan pattern intelligent recognition using visibility graph. IEEE Access, 2019, 7, 175628- 175641.
doi: 10.1109/ACCESS.2019.2957769 |
28 |
WAN T, JIANG K L, TANG Y L, et al Automatic LPI radar signal sensing method using visibility graphs. IEEE Access, 2020, 8, 159650- 159660.
doi: 10.1109/ACCESS.2020.3020336 |
29 | COHEN L. Time-frequency analysis. Upper Saddle River: Prentice Hall, 1995. |
30 |
RAVITEJA P, PHAN K T, HONG Y, et al Interference cancellation and iterative detection for orthogonal time frequency space modulation. IEEE Trans. on Wireless Communications, 2018, 17 (10): 6501- 6515.
doi: 10.1109/TWC.2018.2860011 |
31 | YU G A concentrated time-frequency analysis tool for bearing fault diagnosis. IEEE Trans. on Instrumentation and Measurement, 2019, 69 (2): 371- 381. |
32 |
NOBUYUKI O A threshold selection method from gray-level histograms. IEEE Trans. on Systems, Man, and Cybernetics, 1979, 9 (1): 62- 66.
doi: 10.1109/TSMC.1979.4310076 |
[1] | Wenge XING, Chuanrui ZHOU, Chunlei WANG. Modified OMP method for multi-target parameter estimation in frequency-agile distributed MIMO radar [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1089-1094. |
[2] | Xiaolong SU, Zhen LIU, Bin SUN, Yang WANG, Xin CHEN, Xiang LI. Fast BSC-based algorithm for near-field signal localization via uniform circular array [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 269-278. |
[3] | Zhigeng FANG, Shuang WU, Xiaoli ZHANG, Yunke SUN. ADC-GERT network parameter estimation model for mission effectiveness of joint operation system [J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1394-1406. |
[4] | Shuyu ZHENG, Xiaokuan ZHANG, Weichen ZHAO, Jianxiong ZHOU, Binfeng ZONG, Jiahua XU. Parameter estimation of GTD model and RCS extrapolation based on a modified 3D-ESPRIT algorithm [J]. Journal of Systems Engineering and Electronics, 2020, 31(6): 1206-1215. |
[5] | Shixin WANG, Yuan ZHAO, Ibrahim LAILA, Ying XIONG, Jun WANG, Bin TANG. Joint 2D DOA and Doppler frequency estimation for L-shaped array using compressive sensing [J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 28-36. |
[6] | Chengzhi Yang, Zhiwei Xiong, Yang Guo, and Bolin Zhang. LPI radar signal detection based on the combination of FFT and segmented autocorrelation plus PAHT [J]. Systems Engineering and Electronics, 2017, 28(5): 890-899. |
[7] | Xianghui Yuan and Tao Liu. Texture invariant estimation of equivalent number of looks based on log-cumulants in polarimetric radar imagery [J]. Systems Engineering and Electronics, 2017, 28(1): 58-. |
[8] | Jinfeng Hu, Xuan He, Wange Li, Hui Ai, Huiyong Li, and Julan Xie. Parameter estimation of maneuvering targets in OTHR based on sparse time-frequency representation [J]. Systems Engineering and Electronics, 2016, 27(3): 574-580. |
[9] | Jianzhong Zhao, Jianqiu Deng, Wen Ye, and Xiaofeng Lü. Combined forecast method of HMM and LS-SVM about electronic equipment state based on MAGA [J]. Systems Engineering and Electronics, 2016, 27(3): 730-738. |
[10] | Yongjian Liu, Peng Xiao, Hongchao Wu, and Weihua Xiao. LPI radar signal detection based on radial integration of Choi-Williams time-frequency image [J]. Journal of Systems Engineering and Electronics, 2015, 26(5): 973-981. |
[11] | Yong Wang and Jian Kang. Parameter estimation for rigid body after micro-Doppler removal based on L-statistics in the radar analysis [J]. Systems Engineering and Electronics, 2015, 26(3): 457-467. |
[12] | Haihui Long and Jiankang Zhao. Identification of multiple inputs single output errors-in-variables system using cumulant [J]. Journal of Systems Engineering and Electronics, 2014, 25(6): 921-933. |
[13] | Zhenkai Zhang, Jiehao Zhu, Yubo Tian, and Hailin Li. Novel sensor selection strategy for LPI based on an improved IMMPF tracking method [J]. Journal of Systems Engineering and Electronics, 2014, 25(6): 1004-1010. |
[14] | Peilin Sun, Jun Tang, and Xiaowei Tang. Cramer-Rao bound and signal-to-noise ratio gain in distributed coherent aperture radar [J]. Journal of Systems Engineering and Electronics, 2014, 25(2): 217-225. |
[15] | Yuliang Qin, Bin Deng, Zonghui Huang, and Wuge Su. Hybrid micromotion-scattering center model for synthetic aperture radar micromotion target imaging [J]. Journal of Systems Engineering and Electronics, 2013, 24(6): 931-937. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||