Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (2): 498-516.doi: 10.23919/JSEE.2021.000042
• CONTROL THEORY AND APPLICATION • Previous Articles
Zhifei XI*(), An XU, Yingxin KOU, Zhanwu LI, Aiwu YANG
Received:
2020-03-18
Online:
2021-04-29
Published:
2021-04-29
Contact:
Zhifei XI
E-mail:18149365256@163.com
About author:
Zhifei XI, An XU, Yingxin KOU, Zhanwu LI, Aiwu YANG. Target maneuver trajectory prediction based on RBF neural network optimized by hybrid algorithm[J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 498-516.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Parameter settings for each algorithm"
Algorithm | Parameter |
PSO | |
IPSO | |
Table 2
Comparison of prediction performance of six models with independent method"
Coordinate | Algorithm | MAE | NMSE | Perr | Cor | Time |
X | Hybrid algorithm | 16.0787 | 0.0020 | 9.8677×10?5 | 0.9987 | 14.350948 |
k-means-RBF | 54.2051 | 0.0237 | 0.0011 | 0.9923 | 2.393672 | |
KRLS-RBF | 36.6747 | 0.0110 | 5.2293×10?4 | 0.9967 | 8.118918 | |
PSO-RBF | 22.5727 | 0.0044 | 2.1902×10?4 | 0.9980 | 2.157142 | |
BP | 28.2177 | 0.0053 | 2.5598×10?4 | 0.9987 | 4.232382 | |
RBF | 84.2022 | 0.0519 | 0.0024 | 0.9972 | 5.316289 | |
Y | Hybrid algorithm | 29.5963 | 0.0017 | 5.9124×10?5 | 0.9988 | 7.500620 |
k-means-RBF | 50.3425 | 0.0059 | 2.0235×10?4 | 0.9967 | 1.9489286 | |
KRLS-RBF | 38.0530 | 0.0033 | 1.1197×10?4 | 0.9980 | 9.833438 | |
PSO-RBF | 35.6712 | 0.0029 | 1.0072×10?4 | 0.9979 | 2.279306 | |
BP | 59.2305 | 0.0071 | 2.4251×10?4 | 0.9979 | 4.901085 | |
RBF | 49.7448 | 0.0053 | 1.8278×10?4 | 0.9971 | 5.310010 | |
Z | Hybrid algorithm | 2.6647 | 0.0169 | 5.6031×10?7 | 0.9926 | 7.971086 |
k-means-RBF | 5.4294 | 0.0977 | 3.2308×10?6 | 0.9517 | 2.292306 | |
KRLS-RBF | 3.9263 | 0.0344 | 1.1381×10?6 | 0.9830 | 8.561687 | |
PSO-RBF | 23.8547 | 1.0174 | 3.3684×10?5 | 0.1953 | 2.328323 | |
BP | 8.4035 | 0.1028 | 3.4118×10?6 | 0.9849 | 4.102884 | |
RBF | 10.2155 | 0.1689 | 5.5776×10?6 | 0.9439 | 9.192351 |
Table 3
Comparison of prediction performance of six models with overall method"
Coordinate | Algorithm | MAE | NMSE | Perr | Cor | Time |
X | Hybrid algorithm | 40.2672 | 0.0144 | 7.1105×10?4 | 0.9933 | 29.616218 |
k-means-RBF | 136.1964 | 0.1450 | 0.0081 | 0.9968 | 17.959766 | |
KRLS-RBF | 170.9212 | 0.2210 | 0.0093 | 0.9957 | 25.521019 | |
PSO-RBF | 23.0470 | 0.0041 | 2.0694×10?4 | 0.9988 | 13.886920 | |
BP | 106.2750 | 0.0797 | 0.0035 | 0.9923 | 26.891305 | |
RBF | 123.7173 | 0.1101 | 0.0050 | 0.9743 | 12.254671 | |
Y | Hybrid algorithm | 47.1890 | 0.0041 | 1.4496×10?4 | 0.9988 | 29.616218 |
k-means-RBF | 89.4069 | 0.0139 | 4.6373×10?4 | 0.9987 | 17.959766 | |
KRLS-RBF | 69.8827 | 0.0120 | 4.0600×10?4 | 0.9987 | 25.521019 | |
PSO-RBF | 79.8018 | 0.0141 | 5.0993×10?4 | 0.9989 | 13.886920 | |
BP | 170.0623 | 0.0651 | 0.0024 | 0.9920 | 26.891305 | |
RBF | 330.4476 | 0.1861 | 0.0056 | 0.9918 | 12.254671 | |
Z | Hybrid algorithm | 12.1015 | 0.2226 | 7.3642×10?6 | 0.9515 | 29.616218 |
k-means-RBF | 36.8691 | 2.8773 | 9.4013×10?5 | 0.0574 | 17.959766 | |
KRLS-RBF | 18.6878 | 0.7032 | 2.3306×10?5 | 0.6510 | 25.521019 | |
PSO-RBF | 58.3648 | 5.3875 | 1.7416×10?4 | 0.1688 | 13.886920 | |
BP | 5.1186 | 0.0529 | 1.7464×10?6 | 0.9933 | 26.891305 | |
RBF | 36.7159 | 2.1721 | 7.082×10?5 | 0.8511 | 12.254671 |
1 | MA G B, XUE A K Application of data mining technology in predicting the track of moving object. Computer Engineering and Applications, 2004, 40 (11): 210- 212. |
2 | YOU H H, YU M J, LV Y, et al Application of UKF optimized by improved gray wolf algorithm in air combat trajectory prediction. Tactical Missile Technology, 2020, (1): 91- 98. |
3 | KIM B M, CHOI K C, KIM B S. Trajectory tracking controller design using neural networks for Tiltrotor UAV. Proc. of the AIAA Guidance, Navigation and Control Conference and Exhibit, 2007: 1–17. |
4 | WANG C, GUO J X, SHEN Z P Prediction of 4D trajectory based on basic flight models. Journal of Southwest Jiaotong University, 2009, 44 (2): 295- 300. |
5 | ZHANG M J, SHAO P N, YU M H Pattern-based moving target trajectory prediction in hyperspace. Computer System & Applications, 2018, 27 (1): 113- 119. |
6 | QIAO S J, HAN N, ZHU X W, et al A dynamic trajectory prediction algorithm based on Kalman filter. Acta Electronica Sinica, 2018, 46 (2): 418- 423. |
7 | IOANNIS L, JOHN L. Adaptive aircraft trajectory prediction using particle filters. Proc. of the AIAA Guidance, Navigation and Control Conference and Exhibit, 2008. DOI: 10.2514/6.2008-7387. |
8 | XIE L, ZHANG J F, SUI D Aircraft trajectory prediction based on interacting multiple model filtering algorithm. Aeronautical Computing Technique, 2012, 42 (5): 68- 71. |
9 | YAN H W, ZOU D Short-term wind speed forecasting based on PSO-Elman optimized by association rule. Computer Engineering and Applications, 2017, 53 (23): 261- 266. |
10 | QIAN K, ZHOU Y, YANG L J, et al Aircraft target track prediction model based on BP neural network. Command Information System and Technology, 2017, 8 (3): 54- 58. |
11 | TAN W, LU B C, HUANG M L Track prediction based on neural networks and genetic algorithm. Journal of Chongqing Jiaotong University, 2010, 29 (1): 147- 150. |
12 | GAN X S, DUANMU J S, MENG Y B, et al Aerodynamic modeling from flight data based on WNN optimized by particle swarm. Acta Aeronautica et Astronautica Sinica, 2012, 33 (7): 1209- 1217. |
13 | YANG R N, ZHANG Z X, ZHANG Y, et al Prediction of aircraft flight performance model based on NARX neural network. Journal of Northwest University, 2017, 47 (1): 7- 12. |
14 |
FAN G F, PENG L L, HONG W C Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model. Applied Energy, 2018, 224, 13- 33.
doi: 10.1016/j.apenergy.2018.04.075 |
15 |
WANG H Z, WANG G B, LI G Q, et al Deep belief network based deterministic and probabilistic wind speed forecasting approach. Applied Energy, 2016, 182, 80- 93.
doi: 10.1016/j.apenergy.2016.08.108 |
16 | KIM H S, EYKHOLT R, SALAS J D Nonlinear dynamics, delay times, and embedding windows. Physica D: Nonlinear Phenomena, 1999, 127 (1/2): 48- 60. |
17 |
KIM H S, KANG D S, KIM J H The BDS statistic and residual test. Stochastic Environmental Research & Risk Assessment, 2003, 17 (1/2): 104- 115.
doi: 10.1007/s00477-002-0118-0 |
18 | YAN Z, JIAN Y, CAI Y J. Initializing k-means clustering using affinity propagation. Proc. of the International Conference on Hybrid Intelligent Systems, 2009, 1: 338–343. |
19 |
HUA X, HU X, YUAN W W Research optimization on logistics distribution center location based on adaptive particle swarm algorithm. Optik, 2016, 127 (20): 8443- 8450.
doi: 10.1016/j.ijleo.2016.06.032 |
20 | GAO W F, LIU S Y, HUANG L L Particle swarm optimization with chaotic opposition-based population initialization and stochastic search technique. Communications in Nonlinear Science & Numerical Simulation, 2012, 17 (11): 4316- 4327. |
21 | TURGUT O E, TURGUT M S, COBAN M T Chaotic quantum behaved particle swarm optimization algorithm for solving nonlinear system of equations. Computers & Mathematics with Applications, 2014, 68 (4): 508- 530. |
22 |
LI P, XU D, ZHOU Z Y, et al Stochastic optimal operation of microgrid based on chaotic binary particle swarm optimization. IEEE Trans. on Smart Grid, 2016, 7 (1): 66- 73.
doi: 10.1109/TSG.2015.2431072 |
23 |
CUANG L Y, YANG C S, WU K C, et al Gene selection and classification using Taguchi chaotic binary particle swarm optimization. Expert Systems with Application, 2011, 38 (10): 13367- 13377.
doi: 10.1016/j.eswa.2011.04.165 |
24 | HUANG G B, SIEW C K Extreme learning machine with randomly assigned RBF kernels. International Journal of Information Technology, 2005, 11 (1): 16- 24. |
25 |
XU L, KRZYZAK A, OJA E Rival penalized competitive learning for clustering analysis, RBF net, and curve detection. IEEE Trans. on Neural Networks, 1993, 4 (4): 636- 649.
doi: 10.1109/72.238318 |
26 | SUN Y X, XIA H W Rival penalized competitive learning-based neural network model for wind power forecasting. Journal of Beijing University of Technology, 2016, 42 (5): 674- 678. |
27 | WANG J S, GAO Z W Network traffic modeling and prediction based on RBF neural network. Computer Engineering and Applications, 2008, 44 (13): 6- 11. |
28 | NOMAN S, SHAMSUDDIN S M, HASSANIEN A E. Hybrid learning enhancement of RBF network with particle swarm optimization. Foundations of Computational Intelligence, Volume 1: Learning and Approximation, 2009, 201: 381–397. |
29 | HU Y M, LI D C, HE Y Q, et al Q-learning algorithm based on incremental RBF network. Robot, 2019, 41 (5): 562- 573. |
30 |
WOLPERT D H, MACREADY W G No free lunch theorems for optimization. IEEE Trans. on Evolutionary Computation, 1997, 1 (1): 67- 82.
doi: 10.1109/4235.585893 |
[1] | Fan WANG, Pengfei FAN, Yonghua FAN, Bin XU, Jie YAN. Robust adaptive control of hypersonic vehicle considering inlet unstart [J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 188-196. |
[2] | Fan LI, Jiajun XIONG, Xuhui LAN, Hongkui BI, Xin CHEN. NSHV trajectory prediction algorithm based on aerodynamic acceleration EMD decomposition [J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 103-117. |
[3] | Mengfan XUE, NLei HA, Dongliang PENG. A combined algorithm of K-means and MTRL for multi-class classification [J]. Journal of Systems Engineering and Electronics, 2019, 30(5): 875-885. |
[4] | Yang LI, Mingyong LIU, Xiaojian ZHANG, Xingguang PENG. Global approximation based adaptive RBF neural network control for supercavitating vehicles [J]. Journal of Systems Engineering and Electronics, 2018, 29(4): 797-804. |
[5] | Jing Yang and Jun Wang. Tag clustering algorithm LMMSK: improved K-means algorithm based on latent semantic analysis [J]. Systems Engineering and Electronics, 2017, 28(2): 374-384. |
[6] | Ling Wang?, Dongmei Fu, Qing Li, and Zhichun Mu. Modelling method with missing values based on clustering and support vector regression [J]. Journal of Systems Engineering and Electronics, 2010, 21(1): 142-147. |
[7] | Yi Qingming. Blind source separation by weighted K-means clustering [J]. Journal of Systems Engineering and Electronics, 2008, 19(5): 882-887. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||