Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (2): 408-416.doi: 10.23919/JSEE.2021.000034
• ELECTRONICS TECHNOLOGY • Previous Articles Next Articles
Md Rizwan KHAN1(), Bikramaditya DAS1,*(
), Bibhuti Bhusan PATI2(
)
Received:
2020-05-14
Online:
2021-04-29
Published:
2021-04-29
Contact:
Bikramaditya DAS
E-mail:rizwankhan85.india@gmail.com;adibik09@gmail.com;pati_bibhuti@rediffmail.com
About author:
Md Rizwan KHAN, Bikramaditya DAS, Bibhuti Bhusan PATI. A criterion based adaptive RSIC scheme in underwater communication[J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 408-416.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Parameters for underwater network"
Parameter | Value |
Channel type | Rayleigh |
Number of transmitters | 4 |
Number of receivers | 4 |
Noise type | Complex Gaussian |
Transmission distance/m | 200 |
Depth from water surface/m | 500 |
Signal interval/ms | 10.3 |
Modulation type | BPSK |
Number of subcarriers | 16 |
Center frequency/kHz | 36 |
Subcarrier spacing/Hz | 42.22 |
Bits per OFDM symbol interval | 16 |
Signal to noise ratio | 10 |
Lower threshold value | ? 0.4 |
Normalized threshold value | 1.4 |
Higher threshold value | 0.6 |
Table 2
Minimum BER of the proposed scheme as a function of higher threshold value ${\zeta _{{{h,m}}}}$ "
Higher threshold value | Minimum value of BER of proposed scheme using weight filtering only | Minimum value of BER of proposed scheme using weight selection and weight filtering |
0.1 | 0.15×10?1 | 4.0×10?1 |
0.2 | 5.8×10?3 | 0.3×10?1 |
0.3 | 3.6×10?3 | 6.0×10?3 |
0.4 | 2.8×10?3 | 3.8×10?3 |
0.5 | 3.7×10?3 | 3.5×10?3 |
0.6 | 8.0×10?3 | 2.8×10?3 |
0.7 | 1.8×10?2 | 2.6×10?3 |
0.8 | 2.8×10?2 | 2.4×10?3 |
1 |
QU F Z, WANG Z D, YANG L Q, et al A journey toward modeling and resolving Doppler in underwater acoustic communications. IEEE Communications Magazine, 2016, 54 (2): 49- 55.
doi: 10.1109/MCOM.2016.7402260 |
2 |
DAS B, SUBUDHI B, PATI B B Cooperative formation control of autonomous underwater vehicles: an overview. International Journal of Automation and Computing, 2016, 13 (3): 199- 225.
doi: 10.1007/s11633-016-1004-4 |
3 |
KHAN M R, DAS B, PATI B B Channel estimation strategies for underwater acoustic (UWA) communication: an overview. Journal of the Franklin Institute, 2020, 357 (11): 7229- 7265.
doi: 10.1016/j.jfranklin.2020.04.002 |
4 |
KHAN M R, MAHAPATRA S, DAS B UWB Saleh-Valenzuela model for underwater acoustic sensor network. International Journal of Information Technology, 2020, 12 (4): 1073- 1083.
doi: 10.1007/s41870-019-00415-6 |
5 | YEO H K, SHARIF B S, ADAMS A E, et al. Multi-user detection for a time-variant multipath environment. Proc. of the International Symposium on Underwater Technology, 2000: 399−404. |
6 | DAS B, TIWARI S, DAS S. Performance study of discrete wavelet packet based MB-OFDM system for short range indoor wireless environment. Proc. of the International Conference on Devices and Communications, 2011: 1−5. |
7 |
QIAO G, BABAR Z, MA L, et al MIMO-OFDM underwater acoustic communication systems—a review. Physical Communication, 2017, 23, 56- 64.
doi: 10.1016/j.phycom.2017.02.007 |
8 | WANG Y, YIN J, PAN Z, et al. Application of OFDM-CDMA in multi-user underwater acoustic communication based on time reversal mirror. Proc. of the 3rd International Conference of Pioneering Computer Scientists, Engineers and Educators, 2017: 325−334. |
9 |
APARICIO J, SHIMURA T Asynchronous detection and identification of multiple users by multi-carrier modulated complementary set of sequences. IEEE Access, 2018, 6, 22054- 22069.
doi: 10.1109/ACCESS.2018.2828500 |
10 |
YANG G, YIN J W, HUANG D F, et al A Kalman filter-based blind adaptive multi-user detection algorithm for underwater acoustic networks. IEEE Sensors Journal, 2016, 16 (11): 4023- 4033.
doi: 10.1109/JSEN.2015.2464814 |
11 |
YIN J W, YANG G, HUANG D F, et al Blind adaptive multi-user detection for under-ice acoustic communications with mobile interfering users. The Journal of the Acoustic Society America, 2017, 141 (1): 70- 75.
doi: 10.1121/1.4974757 |
12 |
YANG G, GUO Q H, HUANG D F, et al Kalman filter-based chip differential blind adaptive multiuser detection for variably mobile asynchronous underwater multiuser communications. IEEE Access, 2018, 6, 49646- 49653.
doi: 10.1109/ACCESS.2018.2868475 |
13 |
YAN T C Spatially multiplexed CDMA multiuser underwater acoustic communications. IEEE Journal of Oceanic Engineering, 2016, 41 (1): 217- 231.
doi: 10.1109/JOE.2015.2412993 |
14 |
CHO S E, SONG H C, HODGKISS W S Successive interference cancellation for underwater acoustic communications. IEEE Journal of Oceanic Engineering, 2011, 36 (4): 490- 501.
doi: 10.1109/JOE.2011.2158014 |
15 | MA L, ZHOU S L, QIAO G, et al Superposition coding for downlink underwater acoustic OFDM. IEEE Journal of Oceanic Engineering, 2017, 42 (1): 175- 187. |
16 | YEO H K, SHARIF B S, HINTON O R, et al. Analysis of a multi-element multi-user receiver for a shallow water acoustic network (SWAN) based on recursive successive interference cancellation (RSIC) technique. Proc. of the Oceans’99, 1999. DOI: 10.1109/OCEANS.1999.800229. |
17 |
YEO H K, SHARIF B S, ADAMS A E, et al Implementation of multiuser detection strategies for coherent underwater acoustic communication. IEEE Journal of Oceanic Engineering, 2002, 27 (1): 17- 27.
doi: 10.1109/48.989880 |
18 |
ZHANG Y J, LATAIEF K B An efficient resource allocation scheme for spatial multiuser access in MIMO/OFDM systems. IEEE Trans. on Communications, 2005, 53 (1): 107- 116.
doi: 10.1109/TCOMM.2004.840666 |
19 |
HSIEH Y T, WU W R Adaptive parallel interference cancellation for CDMA systems—a weight selection and filtering scheme. Signal Processing, 2011, 91 (1): 1- 14.
doi: 10.1016/j.sigpro.2010.06.001 |
[1] | Jiajun HUANG, Chaojie ZHANG, Xiaojun JIN. Approach to MAI cancellation for micro-satellite clusters [J]. Journal of Systems Engineering and Electronics, 2019, 30(5): 823-830. |
[2] | Yasong LUO, Shengliang HU, Chengxu FENG, Jijin TONG. Power optimization algorithm for OFDM underwater acoustic communication using adaptive channel estimation [J]. Journal of Systems Engineering and Electronics, 2019, 30(4): 662-671. |
[3] | Jiansheng HU, Zuxun SONG, Shuxia GUO, Qian ZHANG, Dongdong SHUI. Sparse channel recovery with inter-carrier interference self-cancellation in OFDM [J]. Journal of Systems Engineering and Electronics, 2018, 29(4): 676-683. |
[4] | Ce JI, Chao ZHANG, Wenjing ZHU. Low-complexity PTS scheme based on phase factor sequences optimization [J]. Journal of Systems Engineering and Electronics, 2018, 29(4): 707-713. |
[5] | Yongjun Liu, Guisheng Liao, Zhiwei Yang, and Jingwei Xu. Design of integrated radar and communication system based on MIMO-OFDM waveform [J]. Systems Engineering and Electronics, 2017, 28(4): 669-. |
[6] | Xinhai Wang, Gong Zhang, Fangqing Wen, and De Ben. Schemes for synthesizing high-resolution range profile with extended OFDM-MIMO [J]. Systems Engineering and Electronics, 2017, 28(3): 424-434. |
[7] | Yan Liang, Rongfang Song, Fei Li, Xueyun He, and Lihua Yang. Decoupled estimation of frequency-dependent IQI and channel for OFDM systems with direct-conversion transceivers [J]. Systems Engineering and Electronics, 2017, 28(3): 435-441. |
[8] | Jingwei Yin, Pengyu Du, Guang Yang, and Huanling Zhou. Space-division multiple access for CDMA multiuser underwater acoustic communications [J]. Systems Engineering and Electronics, 2015, 26(6): 1184-1190. |
[9] | Yang Chen1, Jingwei Yin, Ling Zou, Dan Yang, and Yuan Cao. Null subcarriers based Doppler scale estimation with polynomial interpolation for multicarrier communication over ultrawideband underwater acoustic channels [J]. Systems Engineering and Electronics, 2015, 26(6): 1177-1183. |
[10] | Kasun Bandara, Atul Sewaiwar, and Yeon-Ho Chung. Efficient nonlinear companding scheme for substantial reduction in peak-to-average power ratio of OFDM [J]. Journal of Systems Engineering and Electronics, 2015, 26(5): 924-931. |
[11] | Xu Wang, Tao Yang, and Bo Hu. Low-complexity fractional phase estimation for totally blind channel estimation [J]. Journal of Systems Engineering and Electronics, 2015, 26(2): 232-240. |
[12] | Xiaofei Zhang and Dazhuan Xu. Blind channel estimation for multiple antenna OFDM system subject to unknown carrier frequency offset [J]. Journal of Systems Engineering and Electronics, 2014, 25(5): 721-727. |
[13] | Qingfeng Jing, Ming Cheng, Yuping Lu, Weizhi Zhong, and Hongwei Yao. Pseudo-noise preamble based joint frame and frequency synchronization algorithm in OFDM communication systems [J]. Journal of Systems Engineering and Electronics, 2014, 25(1): 1-9. |
[14] | Zhanji Wu and Xiang Gao. Improved MIMO-OFDM scheme for the next generation WLAN [J]. Journal of Systems Engineering and Electronics, 2013, 24(1): 52-59. |
[15] | Jian Chen, Long Yang, and Ming Li. Blind estimation of phase offset in OFDM subcarrier for coherent demodulation [J]. Journal of Systems Engineering and Electronics, 2012, 23(4): 473-480. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||