Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (2): 318-330.doi: 10.23919/JSEE.2021.000027
• INTELLIGENT OPTIMIZATION AND SCHEDULING • Previous Articles Next Articles
Huixiang ZHEN1(), Wenyin GONG1,*(), Ling WANG2()
Received:
2020-09-01
Online:
2021-04-29
Published:
2021-04-29
Contact:
Wenyin GONG
E-mail:zhenhuixiang@cug.edu.cn;wygong@cug.edu.cn;wangling@tsinghua.edu.cn
About author:
Supported by:
Huixiang ZHEN, Wenyin GONG, Ling WANG. Data-driven evolutionary sampling optimization for expensive problems[J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 318-330.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Properties of the test problems"
Abbreviation | Problem | d | Search space | Optimum | Property |
E | Ellipsoid | 20,30,50,100,200 | [?5.12, 5.12]d | 0 | Unimodal |
R | Rosenbrock | 20,30,50,100,200 | [?2.048, 2.048]d | 0 | Multimodal |
A | Ackley | 20,30,50,100,200 | [?32.768, 32.768]d | 0 | Multimodal |
G | Griewank | 20,30,50,100,200 | [?600, 600]d | 0 | Multimodal |
SRR | Shifted rotated rastrigin (f10 in CEC05 [ | 20,30,50,100,200 | [?5, 5]d | ?330 | Very complicated multimodal |
RHC | Rotated hybrid composition function (f19 in CEC05 [ | 20,30,50,100,200 | [?5, 5]d | 10 | Very complicated multimodal |
Table 2
Statistical results of 30 test problems obtained by DESO"
Problem | Best | Worst | Mean | Median | Standard |
E20 | 1.64E-16 | 1.95E-14 | 3.74E-15 | 2.55E-15 | 4.57E-15 |
E30 | 1.00E-09 | 3.96E-07 | 9.04E-08 | 8.36E-08 | 9.19E-08 |
E50 | 1.12E-03 | 2.70E-02 | 7.67E-03 | 5.69E-03 | 5.80E-03 |
E100 | 6.38E+00 | 1.96E+01 | 1.23E+01 | 1.15E+01 | 4.26E+00 |
E200 | 3.12E+02 | 6.65E+02 | 4.80E+02 | 4.62E+02 | 1.04E+02 |
R20 | 1.16E+01 | 1.65E+01 | 1.30E+01 | 1.30E+01 | 1.14E+00 |
R30 | 2.35E+01 | 2.84E+01 | 2.47E+01 | 2.45E+01 | 1.27E+00 |
R50 | 4.50E+01 | 4.92E+01 | 4.66E+01 | 4.66E+01 | 9.83E-01 |
R100 | 9.78E+01 | 1.07E+02 | 1.01E+02 | 1.00E+02 | 2.35E+00 |
R200 | 2.72E+02 | 4.25E+02 | 3.49E+02 | 3.49E+02 | 3.68E+01 |
A20 | 8.52E-07 | 1.42E-05 | 3.96E-06 | 2.92E-06 | 3.10E-06 |
A30 | 7.64E-06 | 8.95E-05 | 3.21E-05 | 2.56E-05 | 1.82E-05 |
A50 | 4.24E-04 | 1.37E+00 | 2.62E-01 | 1.82E-03 | 4.80E-01 |
A100 | 2.04E+00 | 3.75E+00 | 2.89E+00 | 2.89E+00 | 4.71E-01 |
A200 | 5.10E+00 | 6.56E+00 | 5.94E+00 | 5.94E+00 | 4.00E-01 |
G20 | 2.04E-10 | 5.01E-01 | 5.68E-02 | 1.46E-06 | 1.52E-01 |
G30 | 1.60E-06 | 1.19E-02 | 7.96E-04 | 4.02E-05 | 2.63E-03 |
G50 | 1.47E-03 | 3.89E-02 | 9.60E-03 | 6.03E-03 | 1.02E-02 |
G100 | 9.20E-01 | 1.10E+00 | 1.03E+00 | 1.03E+00 | 5.66E-02 |
G200 | 9.45E+00 | 2.39E+01 | 1.61E+01 | 1.55E+01 | 3.38E+00 |
SRR20 | ?2.12E+02 | ?1.17E+02 | ?1.59E+02 | ?1.55E+02 | 2.38E+01 |
SRR30 | ?1.11E+02 | ?3.04E+01 | ?7.25E+01 | ?7.72E+01 | 2.35E+01 |
SRR50 | 1.63E+02 | 3.46E+02 | 2.30E+02 | 2.25E+02 | 4.64E+01 |
SRR100 | 9.99E+02 | 1.39E+03 | 1.20E+03 | 1.19E+03 | 1.18E+02 |
SRR200 | 4.55E+03 | 5.14E+03 | 4.85E+03 | 4.83E+03 | 1.52E+02 |
RHC20 | 1.11E+03 | 1.25E+03 | 1.19E+03 | 1.20E+03 | 3.59E+01 |
RHC30 | 9.41E+02 | 1.02E+03 | 9.66E+02 | 9.64E+02 | 1.89E+01 |
RHC50 | 1.02E+03 | 1.07E+03 | 1.04E+03 | 1.04E+03 | 1.75E+01 |
RHC100 | 1.19E+03 | 1.40E+03 | 1.35E+03 | 1.37E+03 | 4.99E+01 |
RHC200 | 1.19E+03 | 1.50E+03 | 1.35E+03 | 1.35E+03 | 7.49E+01 |
Table 3
Comparison of DESO using different sampling strategies"
Problem | DESO-SS | DESO-SLS | DESO | ||
Mean (Standard) | Mean (Standard) | Mean (Standard) | |||
E20 | 3.6664E-07(1.9910E-07) | 3.2815E-01(3.5169E-01) | 3.7414E-15(4.5651E-15) | ||
E30 | 7.4239E-03(1.0365E-02) | 9.4273E-01(5.4385E-01) | 9.0387E-08(9.1891E-08) | ||
E50 | 3.4855E+00(2.3903E+00) | 6.2837E+00(2.2834E+00) | 7.6666E-03(5.8049E-03) | ||
E100 | 2.9328E+02(6.2192E+01) | 7.2900E+01(2.8170E+01) | 1.2283E+01(4.2566E+00) | ||
R20 | 1.6134E+01(1.3308E+00) | 2.6261E+01(8.6217E+00) | 1.3039E+01(1.1425E+00) | ||
R30 | 2.7951E+01(9.6690E-01) | 3.4825E+01(7.0368E+00) | 2.4713E+01(1.2670E+00) | ||
R50 | 6.6163E+01(2.0960E+01) | 5.9539E+01(6.9527E+00) | 4.6602E+01(9.8297E-01) | ||
R100 | 3.7220E+02(6.3760E+01) | 1.5384E+02(2.1127E+01) | 1.0127E+02(2.3479E+00) | ||
A20 | 1.4194E+00(4.9019E-01) | 6.0124E-01(5.2485E-01) | 3.9556E-06(3.0972E-06) | ||
A30 | 3.1331E+00(5.5586E-01) | 4.8188E-01(3.1148E-01) | 3.2057E-05(1.8247E-05) | ||
A50 | 4.1422E+00(6.2899E-01) | 1.3383E+00(3.4250E-01) | 2.6203E-01(4.7966E-01) | ||
A100 | 7.6050E+00(9.1124E-01) | 3.4714E+00(4.7813E-01) | 2.8883E+00(4.7124E-01) | ||
G20 | 5.8210E-01(2.1501E-01) | 2.4515E-01(4.0269E-01) | 5.6784E-02(1.5159E-01) | ||
G30 | 5.3728E-01(1.8834E-01) | 3.8896E-02(1.9702E-02) | 7.9600E-04(2.6309E-03) | ||
G50 | 1.0964E+00(1.2913E-01) | 1.9459E-01(6.1384E-02) | 9.5999E-03(1.0159E-02) | ||
G100 | 1.8652E+01(4.9693E+00) | 2.5451E+00(6.6982E-01) | 1.0250E+00(5.6619E-02) | ||
SRR20 | ?1.5860E+02(1.4435E+01) | ?1.3860E+02(1.8281E+01) | ?1.5919E+02(2.3821E+01) | ||
SRR30 | ?5.6265E+01(2.6909E+01) | ?3.8143E+01(3.4480E+01) | ?7.2471E+01(2.3485E+01) | ||
SRR50 | 2.2778E+02(5.4075E+01) | 2.5261E+02(4.4738E+01) | 2.3005E+02(4.6423E+01) | ||
SRR100 | 1.1417E+03(6.8809E+01) | 1.3542E+03(1.0738E+02) | 1.2021E+03(1.1833E+02) | ||
RHC20 | 1.1807E+03(5.0535E+01) | 1.2103E+03(6.3443E+01) | 1.1926E+03(3.5859E+01) | ||
RHC30 | 9.6940E+02(2.3313E+01) | 1.0127E+03(3.8582E+01) | 9.6599E+02(1.8853E+01) | ||
RHC50 | 1.0631E+03(2.1495E+01) | 1.0988E+03(3.6477E+01) | 1.0411E+03(1.7546E+01) | ||
RHC100 | 1.3871E+03(3.8007E+01) | 1.3784E+03(3.3023E+01) | 1.3541E+03(4.9898E+01) |
Table 4
Comparison of DESO using different local search optimizers"
Problem | DESO-DE | DESO-PSO | DESO-JADE | ||
Mean (Standard) | Mean (Standard) | Mean (Standard) | |||
E30 | 9.0387E-08(9.1891E-08) | 1.0431E-08 (1.2405E-08) | 2.0660E-08(3.5522E-08) | ||
E50 | 7.6666E-03(5.8049E-03) | 2.9575E-03(2.5580E-03) | 2.0126E-03(2.1218E-03) | ||
E100 | 1.2283E+01(4.2566E+00) | 3.1564E+00(1.1696E+00) | 2.9194E+00(1.4148E+00) | ||
R30 | 2.4713E+01(1.2670E+00) | 2.3802E+01(1.0361E+00) | 2.4079E+01(5.9837E-01) | ||
R50 | 4.6602E+01(9.8297E-01) | 4.5721E+01(6.5097E-01) | 4.5523E+01(7.1813E-01) | ||
R100 | 1.0127E+02(2.3479E+00) | 9.7918E+01(4.5785E-01) | 9.8597E+01(6.2668E-01) | ||
A30 | 3.2057E-05(1.8247E-05) | 4.9287E-01(6.3449E-01) | 5.7762E-02(2.5830E-01) | ||
A50 | 2.6203E-01(4.7966E-01) | 7.8886E-01(7.0006E-01) | 6.0062E-01(6.9700E-01) | ||
A100 | 2.8883E+00(4.7124E-01) | 2.8424E+00(3.9646E-01) | 3.0345E+00(2.9678E-01) | ||
G30 | 7.9600E-04(2.6309E-03) | 1.3273E-02(4.9904E-02) | 5.0524E-05(1.5774E-04) | ||
G50 | 9.5999E-03(1.0159E-02) | 2.7314E-03(5.1458E-03) | 2.4616E-03(3.0528E-03) | ||
G100 | 1.0250E+00(5.6619E-02) | 4.1510E-01(7.4805E-02) | 5.2188E-01(1.2095E-01) |
Table 5
Comparison of DESO with other algorithms"
Problem | SHADE | GPEME | SA-COSO | SHPSO | ESAO | DESO | |||||||||||
Mean | Standard | Mean | Standard | Mean | Standard | Mean | Standard | Mean | Standard | Mean | Standard | ||||||
E20 | 121.994 | 54.925 | 1.300E-05 | 2.180E-05 | N/A | N/A | N/A | N/A | 1.81E-04 | 4.68E-04 | 3.741E-15 | 4.565E-15 | |||||
E30 | 475.636 | 121.912 | 0.076 | 4.010E-02 | N/A | N/A | 0.212 | 0.152 | 0.027 | 0.070 | 9.039E-08 | 9.189E-08 | |||||
E50 | 1698.723 | 391.560 | 221.080 | 81.612 | 51.475 | 16.246 | 4.028 | 2.060 | 0.740 | 0.555 | 7.667E-03 | 5.805E-03 | |||||
E100 | 9140.519 | 1495.311 | N/A | N/A | 1033.200 | 317.180 | 76.106 | 21.447 | 1282.900 | 134.390 | 12.283 | 4.257 | |||||
E200 | 44123.612 | 6920.598 | N/A | N/A | 16382.000 | 2981.100 | N/A | N/A | 1.76E+04 | 1.17E+03 | 479.920 | 103.740 | |||||
R20 | 363.972 | 128.456 | 22.428 | 18.795 | N/A | N/A | N/A | N/A | 15.162 | 1.629 | 13.039 | 1.143 | |||||
R30 | 1058.046 | 352.854 | 46.177 | 25.520 | N/A | N/A | 28.566 | 0.404 | 25.036 | 1.570 | 24.713 | 1.267 | |||||
R50 | 2257.047 | 932.045 | 258.280 | 80.188 | 252.580 | 40.744 | 50.800 | 3.031 | 47.391 | 1.712 | 46.602 | 0.983 | |||||
R100 | 6676.190 | 1502.416 | N/A | N/A | 2714.200 | 117.020 | 165.590 | 26.366 | 578.840 | 44.767 | 101.270 | 2.348 | |||||
R200 | 16730.022 | 3760.863 | N/A | N/A | 16411.000 | 4096.500 | N/A | N/A | 4.31E+03 | 2.84E+02 | 348.720 | 36.776 | |||||
A20 | 15.800 | 1.184 | 0.199 | 0.577 | N/A | N/A | N/A | N/A | 6.865 | 3.259 | 3.956E-06 | 3.097E-06 | |||||
A30 | 16.507 | 1.205 | 3.011 | 0.925 | N/A | N/A | 1.442 | 0.774 | 2.521 | 0.840 | 3.206E-05 | 1.825E-05 | |||||
A50 | 17.817 | 0.841 | 13.233 | 1.585 | 8.932 | 1.067 | 1.839 | 5.637 | 1.431 | 0.249 | 0.262 | 0.480 | |||||
A100 | 18.532 | 0.411 | N/A | N/A | 15.756 | 0.503 | 4.113 | 0.592 | 10.364 | 0.211 | 2.888 | 0.471 | |||||
A200 | 18.865 | 0.323 | N/A | N/A | 17.868 | 0.022 | N/A | N/A | 14.696 | 0.2193 | 5.943 | 0.400 | |||||
G20 | 54.934 | 17.333 | 0.031 | 0.068 | N/A | N/A | N/A | N/A | 0.972 | 0.039 | 0.057 | 0.152 | |||||
G30 | 127.121 | 47.575 | 0.997 | 0.108 | N/A | N/A | 0.921 | 0.088 | 0.953 | 0.050 | 7.960E-04 | 2.631E-03 | |||||
G50 | 280.808 | 43.906 | 36.646 | 13.176 | 6.006 | 1.104 | 0.945 | 0.061 | 0.940 | 0.042 | 9.600E-03 | 1.016E-02 | |||||
G100 | 726.981 | 103.158 | N/A | N/A | 63.353 | 19.021 | 1.070 | 0.020 | 57.342 | 5.839 | 1.025 | 0.057 | |||||
G200 | 1528.380 | 190.728 | N/A | N/A | 577.760 | 101.400 | N/A | N/A | 572.903 | 36.043 | 16.141 | 3.381 | |||||
SRR20 | ?8.473 | 59.846 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | ?1.59E+02 | 2.38E+01 | |||||
SRR30 | 179.346 | 79.508 | ?21.861 | 36.449 | N/A | N/A | ?92.830 | 22.544 | 6.325 | 26.477 | ?72.471 | 23.485 | |||||
SRR50 | 633.467 | 89.457 | N/A | N/A | 197.160 | 30.599 | 134.420 | 32.256 | 198.610 | 45.825 | 230.050 | 46.423 | |||||
SRR100 | 2235.075 | 267.703 | N/A | N/A | 1273.100 | 117.190 | 801.730 | 72.252 | 713.470 | 26.454 | 1202.100 | 118.330 | |||||
SRR200 | 6480.683 | 252.517 | N/A | N/A | 3927.500 | 272.540 | N/A | N/A | 5.39E+03 | 156.8544 | 4853.100 | 151.620 | |||||
RHC20 | 1395.179 | 81.068 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 1.19E+03 | 35.9 | |||||
RHC30 | 1229.265 | 49.472 | 958.590 | 25.695 | N/A | N/A | 939.610 | 9.018 | 931.670 | 8.942 | 965.990 | 18.853 | |||||
RHC50 | 1304.984 | 33.006 | N/A | N/A | 1080.900 | 32.859 | 996.600 | 22.145 | 975.320 | 37.110 | 1041.100 | 17.546 | |||||
RHC100 | 1567.296 | 48.421 | N/A | N/A | 1365.700 | 30.867 | 1419.800 | 38.238 | 1372.400 | 27.539 | 1354.100 | 49.898 | |||||
RHC200 | 1571.078 | 38.177 | N/A | N/A | 1347.300 | 24.665 | N/A | N/A | 1.456E+03 | 20.432 | 1345.500 | 74.897 |
Table 6
Optimized PARSEC parameters"
Design parameter | Original value | Search range |
(Rle) Leading edge radius | 0.021 6 | 0.001 5 |
(Xup) Position of upper crest | 0.344 5 | 0.025 |
(Yup) Upper crest point | 0.079 12 | 0.015 |
(YXXup) Upper crest curvature | ?0.644 8 | 0.01 |
(Xlo) Position of lower crest | 0.17 | 0.02 |
(Ylo) Lower crest point | ?0.033 797 | 0.015 |
(YXXlo) Lower crest curvature | 0.674 8 | 0.075 |
(TTE) Trailing edge thickness | 0 | 0 |
(Toff) Trailing edge offset | 0 | 0 |
(αTE) Trailing edge direction angle | 0 | 0.175 |
(βTE)) Trailing edge wedge angle | 0 | 0.05 |
1 |
LIU H, ONG Y S, CAI J A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design. Structural and Multidisciplinary Optimization, 2018, 57 (1): 393- 416.
doi: 10.1007/s00158-017-1739-8 |
2 | FORRESTER A I, BRESSLOFF N W, KEANE A J. Optimization using surrogate models and partially converged computational fluid dynamics simulations. Proc. of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006: 2177–2204. |
3 |
PAPADRAKAKIS M, LAGAROS N D, TSOMPANAKIS Y Structural optimization using evolution strategies and neural networks. Computer Methods in Applied Mechanics and Engineering, 1998, 156 (1−4): 309- 333.
doi: 10.1016/S0045-7825(97)00215-6 |
4 |
BONTE M H, FOURMENT L, DO T, et al Optimization of forging processes using finite element simulations. Structural and Multidisciplinary Optimization, 2010, 42 (5): 797- 810.
doi: 10.1007/s00158-010-0545-3 |
5 |
JIN Y C, SENDHOFF B A systems approach to evolutionary multiobjective structural optimization and beyond. IEEE Computational Intelligence Magazine, 2009, 4 (3): 62- 76.
doi: 10.1109/MCI.2009.933094 |
6 | EMMERICH M, GIOTIS A, OZDEMIR M, et al. Metamodel-assisted evolution strategies. Proc. of the International Conference on Parallel Problem Solving from Nature, 2002: 361–370. |
7 |
JIN Y C Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm and Evolutionary Computation, 2011, 1 (2): 61- 70.
doi: 10.1016/j.swevo.2011.05.001 |
8 | JIN Y C, WANG H, CHUGH T, et al Data-driven evolutionary optimization: an overview and case studies. IEEE Trans. on Evolutionary Computation, 2018, 23 (3): 442- 458. |
9 |
CAI X W, QIU H B, GAO L, et al An efficient surrogate assisted particle swarm optimization algorithm for high-dimensional expensive problems. Knowledge-Based Systems, 2019, 184, 104901.
doi: 10.1016/j.knosys.2019.104901 |
10 |
GONG W Y, ZHOU A M, CAI Z H A multioperator search strategy based on cheap surrogate models for evolutionary optimization. IEEE Trans. on Evolutionary Computation, 2015, 19 (5): 746- 758.
doi: 10.1109/TEVC.2015.2449293 |
11 |
LI F, CAI X W, GAO L, et al A surrogate-assisted multiswarm optimization algorithm for high-dimensional computationally expensive problems. IEEE Trans. on Cybernetics, 2020, 51 (3): 1390- 1402.
doi: 10.1109/TCYB.2020.2967553 |
12 | KRITHIKAA M, MALLIPEDDI R. Differential evolution with an ensemble of low-quality surrogates for expensive optimization problems. Proc. of the IEEE Congress on Evolutionary Computation, 2016: 78–85. |
13 |
MYERS R H, MONTGOMERY D C, VINING G G, et al Response surface methodology: a retrospective and literature survey. Journal of Quality Technology, 2004, 36 (1): 53- 77.
doi: 10.1080/00224065.2004.11980252 |
14 |
BUCHE D, SCHRAUDOLPH N N, KOUMOUTSAKOS P Accelerating evolutionary algorithms with Gaussian process fitness function models. IEEE Trans. on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2005, 35 (2): 183- 194.
doi: 10.1109/TSMCC.2004.841917 |
15 | LIU B, ZHANG Q, GIELEN G G A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems. IEEE Trans. on Evolutionary Computation, 2013, 18 (2): 180- 192. |
16 | ZHAN Y, SU G S, YAN L B Cooperative optimization algorithm based on particle swarm optimization and Gaussian process. Journal of Systems Engineering and Electronics, 2013, 35 (6): 1342- 1347. |
17 |
MARTIN J D, SIMPSON T W Use of kriging models to approximate deterministic computer models. AIAA Journal, 2005, 43 (4): 853- 863.
doi: 10.2514/1.8650 |
18 |
KLEIJNEN J P Kriging metamodeling in simulation: a review. European Journal of Operational Research, 2009, 192 (3): 707- 716.
doi: 10.1016/j.ejor.2007.10.013 |
19 |
PARK J, SANDBERG I W Universal approximation using radial-basis function networks. Neural Computation, 1991, 3 (2): 246- 257.
doi: 10.1162/neco.1991.3.2.246 |
20 |
JIN Y C, OLHOFER M, SENDHOFF B A framework for evolutionary optimization with approximate fitness functions. IEEE Trans. on Evolutionary Computation, 2002, 6 (5): 481- 494.
doi: 10.1109/TEVC.2002.800884 |
21 | GASPAR-CUNHA A, VIEIRA A. A hybrid multi-objective evolutionary algorithm using an inverse neural network. Proc. of the Hybrid Metaheuristics, 2004: 25–30. |
22 | GASPAR-CUNHA A, VIEIRA A A multi-objective evolutionary algorithm using neural networks to approximate fitness evaluations. International Journal of Computers, Systems and Signals, 2005, 6 (1): 18- 36. |
23 | LOSHCHILOV I, SCHOENAUER M, SEBAG M. Comparison-based optimizers need comparison-based surrogates. Proc. of the International Conference on Parallel Problem Solving from Nature, 2010: 364−373. |
24 | POLOCZEK J, KRAMER O. Local SVM constraint surrogate models for self-adaptive evolution strategies. Proc. of the Annual Conference on Artificial Intelligence, 2013: 164−175. |
25 |
WANG H, JIN Y, DOHERTY J Committee-based active learning for surrogate-assisted particle swarm optimization of expensive problems. IEEE Trans. on Cybernetics, 2017, 47 (9): 2664- 2677.
doi: 10.1109/TCYB.2017.2710978 |
26 | WANG H D, JIN Y C, SUN C L, et al Offline data-driven evolutionary optimization using selective surrogate ensembles. IEEE Trans. on Evolutionary Computation, 2018, 23 (2): 203- 216. |
27 |
JONES D R, SCHONLAU M, WELCH W J Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 1998, 13 (4): 455- 492.
doi: 10.1023/A:1008306431147 |
28 |
BRANKE J, SCHMIDT C Faster convergence by means of fitness estimation. Soft Computing, 2005, 9 (1): 13- 20.
doi: 10.1007/s00500-003-0329-4 |
29 |
LI F, CAI X W, GAO L Ensemble of surrogates assisted particle swarm optimization of medium scale expensive problems. Applied Soft Computing, 2019, 74, 291- 305.
doi: 10.1016/j.asoc.2018.10.037 |
30 | BHOSEKAR A, IERAPETRITOU M Advances in surrogate based modeling, feasibility analysis, and optimization: a review. Computers & Chemical Engineering, 2018, 108, 250- 267. |
31 |
ZHOU Z Z, ONG Y S, NAIR P B, et al Combining global and local surrogate models to accelerate evolutionary optimization. IEEE Trans. on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2007, 37 (1): 66- 76.
doi: 10.1109/TSMCC.2005.855506 |
32 |
WANG X, WANG G G, SONG B, et al A novel evolutionary sampling assisted optimization method for high-dimensional expensive problems. IEEE Trans. on Evolutionary Computation, 2019, 23 (5): 815- 827.
doi: 10.1109/TEVC.2019.2890818 |
33 |
YU H B, TAN Y, ZENG J C, et al Surrogate-assisted hierarchical particle swarm optimization. Information Sciences, 2018, 454/455, 59- 72.
doi: 10.1016/j.ins.2018.04.062 |
34 | CAI X W, GAO L, LI X Y Efficient generalized surrogate-assisted evolutionary algorithm for high-dimensional expensive problems. IEEE Trans. on Evolutionary Computation, 2019, 24 (2): 365- 379. |
35 |
SUN C L, JIN Y C, CHENG R, et al Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems. IEEE Trans. on Evolutionary Computation, 2017, 21 (4): 644- 660.
doi: 10.1109/TEVC.2017.2675628 |
36 |
ONG Y S, NAIR P B, KEANE A J Evolutionary optimization of computationally expensive problems via surrogate modeling. AIAA Journal, 2003, 41 (4): 687- 696.
doi: 10.2514/2.1999 |
37 |
STORN R, PRICE K Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11 (4): 341- 359.
doi: 10.1023/A:1008202821328 |
38 | FEOKTISTOV V. Differential evolution. New York: Springer, 2006. |
39 |
ZHANG J, SANDERSON A C JADE: adaptive differential evolution with optional external archive. IEEE Trans. on Evolutionary Computation, 2009, 13 (5): 945- 958.
doi: 10.1109/TEVC.2009.2014613 |
40 |
GONG W Y, CAI Z H Differential evolution with ranking-based mutation operators. IEEE Trans. on Cybernetics, 2013, 43 (6): 2066- 2081.
doi: 10.1109/TCYB.2013.2239988 |
41 |
WU G H, SHEN X, LI H F, et al Ensemble of differential evolution variants. Information Sciences, 2018, 423, 172- 186.
doi: 10.1016/j.ins.2017.09.053 |
42 | DAS S, SUGANTHAN P N Differential evolution: a survey of the state-of-the-art. IEEE Trans. on Evolutionary Computation, 2010, 15 (1): 4- 31. |
43 |
DAS S, MULLICK S S, SUGANTHAN P N Recent advances in differential evolution–an updated survey. Swarm and Evolutionary Computation, 2016, 27, 1- 30.
doi: 10.1016/j.swevo.2016.01.004 |
44 | KENNEDY J, EBERHART R. Particle swarm optimization. Proc. of the International Conference on Neural Networks, 1995: 1942−1948. |
45 |
CHENG R, JIN Y C A social learning particle swarm optimization algorithm for scalable optimization. Information Sciences, 2015, 291, 43- 60.
doi: 10.1016/j.ins.2014.08.039 |
46 | BISHOP C M. Neural networks for pattern recognition. Oxford: Oxford University Press, 1995. |
47 | HELTON J C, DAVIS F J Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering & System Safety, 2003, 81 (1): 23- 69. |
48 | SUGANTHAN P N, HANSEN N, LIANG J J, et al. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Singapore: Nanyang Technological University, 2005. |
49 |
LOCATELLI M A note on the Griewank test function. Journal of Global Optimization, 2003, 25 (2): 169- 174.
doi: 10.1023/A:1021956306041 |
50 | TANABE R, FUKUNAGA A. Success-history based parameter adaptation for differential evolution. Proc. of the IEEE Congress on Evolutionary Computation, 2013: 71−78. |
51 |
SALUNKE N P, JUNED AHAMAD R A, CHANNIWALA S A Airfoil parameterization techniques: a review. American Journal of Mechanical Engineering, 2014, 2 (4): 99- 102.
doi: 10.12691/ajme-2-4-1 |
52 |
MUKESH R, LINGADURAI K, SELVAKUMAR U Airfoil shape optimization using non-traditional optimization technique and its validation. Journal of King Saud University-Engineering Sciences, 2014, 26 (2): 191- 197.
doi: 10.1016/j.jksues.2013.04.003 |
[1] | Alireza MOHSENI, Vincent DUCHAINE, Tony WONG. Experimental study of path planning problem using EMCOA for a holonomic mobile robot [J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1450-1462. |
[2] | Rongling Lang, Zheping Xu, and Fei Gao. Data-driven fault diagnosis method for analog circuits based on robust competitive agglomeration [J]. Journal of Systems Engineering and Electronics, 2013, 24(4): 706-712. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||