Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (2): 272-285.doi: 10.23919/JSEE.2021.000024
• INTELLIGENT OPTIMIZATION AND SCHEDULING • Previous Articles Next Articles
Xiuli WU1,*(), Junjian PENG1(), Zirun XIE1(), Ning ZHAO1(), Shaomin WU2()
Received:
2020-12-02
Online:
2021-04-29
Published:
2021-04-29
Contact:
Xiuli WU
E-mail:wuxiuli@ustb.edu.cn;18810458661@163.com;xiezirain@163.com;nickzhao@me.ustb.edu.cn;s.m.wu@kent.ac.uk
About author:
Supported by:
Xiuli WU, Junjian PENG, Zirun XIE, Ning ZHAO, Shaomin WU. An improved multi-objective optimization algorithm for solving flexible job shop scheduling problem with variable batches[J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 272-285.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
The notations"
Notation | Definition |
m | Amount of the machines |
n | Amount of the jobs |
l | Machines index,l =1, 2, ···, m |
i | Jobs index,i= 1, 2, ···, n |
| Sub-batches of job i |
j | Sub-batch index of jobi, j = 1, 2, ···, | |
Ki | Operations of job i |
k | Operation index, k= 1, 2, ···, |Ki| |
| The kth operation of the jth sub-batch of job i |
| Processing time of operation |
| Processing time of operation |
| Batch size of job i |
| Batch size of the jth sub-batch of job i |
| Batch size of the jth sub-batch of job i after adjustment |
| Actual added batch size of the jth sub-batch of job i |
| Virtual added batch size of the jth sub-batch of job i |
| The makespan |
| Start time of operation |
| Ending time of operation |
T | Total transportation time |
| Transferring time from machinel1 to machine l2; |
| |
| At time t if |
| If the jth sub-batch of job i needs to increase the batch size, |
Table 3
The instances"
Number | Instance | | Batch size of jobs |
Test01 | Novas[ | 3 | [32, 48, 31] |
Test02 | Zhao et al[ | 3 | [54, 58, 49] |
Test03 | Novas[ | 3 | [21, 39, 36] |
Test04 | Novas[ | 4 | [9, 20, 25, 6] |
Test05 | Defersha et al.[ | 4 | [32, 47, 20, 17] |
Test06 | Defersha et al.[ | 6 | [17, 49, 43, 23, 46, 19] |
Test07 | Novas[ | 8 | [17, 29, 33, 33, 46, 19, 9, 43] |
Test08 | Novas[ | 9 | [22, 47, 35, 19, 36, 38, 28, 30, 38] |
Test09 | Novas[ | 11 | [46, 9, 30, 47, 7, 7, 44, 9, 18, 46, 17] |
Test10 | Novas[ | 12 | [46, 35, 39, 9, 28, 17, 43, 5, 13, 7, 50, 21] |
Table 4
Results"
Indicator | R | pc=0.7 | pc=0.8 | pc=0.9 | ||||||||
pm=0.1 | pm=0.15 | pm=0.2 | pm=0.1 | pm=0.15 | pm=0.2 | pm=0.1 | pm=0.15 | pm=0.2 | ||||
HV | 0.05 | 606.61 | 1 944.64 | 1 820.26 | 2 220.54 | 944.31 | 1 429.1 | 1 970.26 | 1 273.82 | 2 396.7 | ||
0.1 | 1 585.36 | 1 896.8 | 639.58 | 2 204.65 | 2 059.63 | 1 506.86 | 2 115.18 | 134.93 | 2 911.07 | |||
0.15 | 1 499.31 | 941.59 | 1 030.54 | 1 092.39 | 1 102.42 | 891.66 | 564.98 | 1 716.67 | 1 110.39 | |||
IHV | 0.05 | 441.24 | 98.63 | 168.22 | 209.71 | 180.28 | 167.88 | 108.44 | 129.01 | 173.12 | ||
0.1 | 95.32 | 91.55 | 266.91 | 132.28 | 258.94 | 214.67 | 130.66 | 74.2 | 192.6 | |||
0.15 | 92.85 | 60.99 | 191.52 | 194.12 | 123.01 | 224.42 | 110.2 | 205.12 | 137.68 | |||
IGD | 0.05 | 1 291.05 | 1 439.39 | 1 348.38 | 1 411.64 | 1 430.61 | 1 888.81 | 1 248.72 | 1 385.6 | 1 587.37 | ||
0.1 | 1 547.89 | 1 396.05 | 1 945.29 | 1 334.35 | 1 954.2 | 1 976.07 | 1 414.73 | 899.4 | 1 517.29 | |||
0.15 | 1 553.3 | 1 225.08 | 1 438.2 | 1 464.17 | 1 193.79 | 1 248.57 | 1 044.2 | 1 532.24 | 1 334.99 |
Table 5
Analyzed results"
HV | IHV | IGD | ||||||||
pc | pm | R | pc | pm | R | pc | pm | R | ||
0.7(1 329.41) | 0.1(1 539.92) | 0.05(1 622.91) | 0.7(167.47) | 0.1(140.11) | 0.05(186.28) | 0.7(1 464.95) | 0.1(1 367.78) | 0.05(1 447.95) | ||
0.8(1 494.61) | 0.15(1 334.97) | 0.1(1 672.67) | 0.8(189.47) | 0.15(241.41) | 0.1(161.90) | 0.8(1 544.69) | 0.15(1 384.04) | 0.1(1 553.91) | ||
0.9(1 577.11) | 0.2(1 526.24 | 0.15(1 105.55) | 0.9(140.11) | 0.2(211.61) | 0.15(148.87) | 0.9(1 329.39) | 0.2(1 587.21) | 0.15(1 337.17) |
Table 6
Results of the distributed performance experiment"
Number | Number of Pareto solutions | HV | IHV | |||||
IMOA | MOEA/D | IMOA | MOEA/D | IMOA | MOEA/D | |||
1 | 11 | 7 | 1 392.98 | 877.17 | 135.42 | 143.21 | ||
2 | 9 | 11 | 1 384.82 | 1 175.43 | 117.44 | 139.39 | ||
3 | 17 | 13 | 3 283.24 | 1 738.94 | 119.16 | 267.15 | ||
4 | 16 | 11 | 3 432.73 | 1 357.31 | 48.03 | 323.70 | ||
5 | 20 | 12 | 3 056.51 | 1 722.89 | 175.76 | 127.31 | ||
6 | 18 | 11 | 3 197.70 | 1 807.41 | 222.03 | 358.76 | ||
7 | 14 | 12 | 3 787.31 | 2 140.67 | 1 054.95 | 294.01 | ||
8 | 15 | 6 | 2 316.36 | 201.77 | 313.59 | 77.95 | ||
9 | 14 | 14 | 1 408.93 | 2 296.49 | 128.13 | 194.86 | ||
10 | 20 | 12 | 3 660.51 | 2 461.24 | 317.63 | 364.25 |
Table 7
Comparison of experimental results"
Instance | Variable batching | Rank | Equal batching | Rank |
Test01 | 0.90 | 17 | 1.09 | 20 |
Test02 | 0.51 | 3 | 0.76 | 9 |
Test03 | 0.59 | 4 | 0.85 | 15 |
Test04 | 0.72 | 8 | 1.02 | 19 |
Test05 | 0.43 | 1 | 0.59 | 5 |
Test06 | 0.67 | 7 | 0.80 | 11 |
Test07 | 0.65 | 6 | 0.83 | 13 |
Test08 | 0.50 | 2 | 0.94 | 18 |
Test09 | 0.78 | 10 | 0.85 | 16 |
Test10 | 0.83 | 12 | 0.84 | 14 |
z = 2.608>1.645 | n1 = 10 | T1 = 70 | n2 = 10 | T2 = 140 |
Table 8
Comparison of BOA-IS and GEM"
Times of test | Makespan | Transferring time | |||
BOA-IS | GEM | BOA-IS | GEM | ||
1 | 119.70 | 121.20 | 46.72 | 68.40 | |
2 | 119.40 | 122.20 | 66.29 | 88.73 | |
3 | 115.60 | 116.00 | 88.00 | 81.59 | |
4 | 117.50 | 117.70 | 68.12 | 98.55 | |
5 | 116.20 | 116.50 | 73.42 | 86.37 | |
6 | 120.50 | 121.20 | 46.91 | 50.95 | |
7 | 118.20 | 118.20 | 83.16 | 109.83 | |
8 | 120.90 | 121.80 | 34.99 | 41.46 | |
9 | 117.23 | 116.20 | 104.40 | 139.90 | |
10 | 117.70 | 119.20 | 59.940 | 108.16 |
Table 9
Comparison of three algorithms"
Test | Makespan | Transportation time | |||||
IMOEA/ISD | MODE | NSGA-II | IMOEA/ISD | MODE | NSGA-II | ||
Test01 | 322.70 | 328.52 | 326.21 | 61.27 | 69.77 | 65.19 | |
Test02 | 195.29 | 188.87 | 186.19 | 37.07 | 41.94 | 59.92 | |
Test03 | 348.96 | 355.56 | 367.99 | 71.17 | 78.72 | 77.80 | |
Test04 | 391.89 | 414.45 | 383.82 | 85.68 | 86.76 | 94.31 | |
Test05 | 304.79 | 356.05 | 327.18 | 95.01 | 88.51 | 98.35 | |
Test06 | 832.20 | 842.26 | 834.61 | 496.87 | 498.05 | 503.50 | |
Test07 | 1 244.15 | 1 214.49 | 1 248.01 | 152.24 | 223.63 | 177.51 | |
Test08 | 1 395.91 | 1 435.80 | 1 441.40 | 348.16 | 376.39 | 376.33 | |
Test09 | 1 409.55 | 1 565.45 | 1 501.74 | 518.93 | 519.10 | 573.55 | |
Test10 | 1 516.48 | 1 556.72 | 1 579.18 | 485.99 | 506.87 | 487.03 |
1 | ZHANG M, TAN Y, ZHU J H, et al A competitive and cooperative migrating birds optimization algorithm for vary-sized batch splitting scheduling problem of flexible job-shop with setup time. Simulation Modelling Practice and Theory, 2020, 100, 1- 19. |
2 |
WU X L, PENG J J, XIAO X, et al An effective approach for the dual-resource flexible job shop scheduling problem considering loading and unloading. Journal of Intelligent Manufacturing, 2021, 32, 707- 728.
doi: 10.1007/s10845-020-01697-5 |
3 | LI Y J, LI S G Scheduling jobs with sizes and delivery times on identical parallel batch machines. Theoretical Computer Science, 2020, 841 (11): 1- 9. |
4 |
WANG Y, JIA Z H, LI K A multi-objective co-evolutionary algorithm of scheduling on parallel non-identical batch machines. Expert Systems with Applications, 2021, 167, 114145.
doi: 10.1016/j.eswa.2020.114145 |
5 | SONG C Improved greedy genetic algorithm for solving the hybrid flow-shop scheduling problem. Systems Engineering and Electronics, 2019, 41 (5): 1079- 1086. |
6 |
OMID S, RASARATNAM L A comparison of two stage-based hybrid algorithms for a batch scheduling problem in hybrid flow shop with learning effect. International Journal of Production Economics, 2018, 195, 227- 248.
doi: 10.1016/j.ijpe.2017.10.015 |
7 |
MENG T, PAN Q K, LI J Q, et al An improved migrating birds optimization for an integrated lot-streaming flow shop scheduling problem. Swarm and Evolutionary Computation, 2018, 38, 64- 78.
doi: 10.1016/j.swevo.2017.06.003 |
8 | LIU S W, PEI J, CHENG H, et al. Two-stage hybrid flow shop scheduling on parallel batching machines considering a job-dependent deteriorating effect and non-identical job sizes. Applied Soft Computing, 2019, 84: 105701. |
9 |
CHANG J H, CHIU H N A comprehensive review of lot streaming. International Journal of Production Research, 2005, 43 (8): 1515- 1536.
doi: 10.1080/00207540412331325396 |
10 | NOVAS M J Production scheduling and lot streaming at flexible job-shops environments using constraint programming. Computers & Industrial Engineering, 2019, 136, 252- 264. |
11 | GENG Z C, YUAN J J, YUAN J L Scheduling with or without precedence relations on a serial-batch machine to minimize makespan and maximum cost. Applied Mathematics and Computation, 2018, 332, 1- 18. |
12 |
HUANG R H, YU T H An effective ant colony optimization algorithm for multi-objective job-shop scheduling with equal-size lot-splitting. Applied Soft Computing, 2017, 57, 642- 656.
doi: 10.1016/j.asoc.2017.04.062 |
13 | DEFERSHA F M Linear programming assisted (not embedded) genetic algorithm for flexible jobshop scheduling with lot streaming. Computers & Industrial Engineering, 2018, 117, 319- 335. |
14 | HAM A M, CAKICI E Flexible job shop scheduling problem with parallel batch processing machines: MIP and CP approaches. Computers & Industrial Engineering, 2016, 102, 160- 165. |
15 |
ZHOU Y, YANG J J, ZHENG L Y Multi-agent based hyper-heuristics for multi-objective flexible job shop scheduling: a case study in an aero-engine blade manufacturing plant. IEEE Access, 2019, 7, 21147- 21176.
doi: 10.1109/ACCESS.2019.2897603 |
16 | BOZEK A, WERNER F Flexible job shop scheduling with lot streaming and sublot size optimization. International Journal of Production Research, 2017, 56 (19): 6391- 6411. |
17 | JIA Z H, WANG Y, WU C, et al Multi-objective energy-aware batch scheduling using ant colony optimization algorithm. Computers & Industrial Engineering, 2019, 131, 41- 56. |
18 |
REITER S A system for managing job-shop production. Journal of Business, 1966, 39 (3): 371- 393.
doi: 10.1086/294867 |
19 |
PENG J G, LIU M Z, ZHANG X, et al Hybrid heuristic algorithm for multi-objective scheduling problem. Journal of Systems Engineering and Electronics, 2019, 30 (2): 327- 342.
doi: 10.21629/JSEE.2019.02.12 |
20 |
DONG Z M, WANG X P, TANG L X MOEA/D with a self-adaptive weight vector adjustment strategy based on chain segmentation. Information Sciences, 2020, 521, 209- 230.
doi: 10.1016/j.ins.2020.02.056 |
21 | JIANG E D, WANG L Multi-objective optimization based on decomposition for flexible job shop scheduling under time-of-use electricity prices. Knowledge-Based Systems, 2020, 204, 106- 177. |
22 | WANG L P, FENG M L, QIU F Y, et al Decomposition multi-objective evolutionary algorithm for recursive replacement optimization strategy. Journal of Chinese Computer Systems, 2018, 39 (6): 1135- 1141. |
23 |
QI Y T, MA X L, LIU F, et al MOEA/D with adaptive weight adjustment. Evolutionary Computation, 2014, 22 (2): 231- 264.
doi: 10.1162/EVCO_a_00109 |
24 |
BRUCKER P, SHAKHLEVICH N V Inverse scheduling: two-machine flow-shop problem. Journal of Scheduling, 2011, 14 (3): 239- 256.
doi: 10.1007/s10951-010-0168-y |
25 |
WU X L, SUN Y J A green scheduling algorithm for flexible job shop with energy-saving measures. Journal of Cleaner Production, 2018, 172, 3249- 3264.
doi: 10.1016/j.jclepro.2017.10.342 |
26 |
ZHAO Y W, WANG H Y, XU X X A new hybrid parallel algorithm for consistent-sized batch splitting job shop scheduling on alternative machines with forbidden intervals. The International Journal of Advanced Manufacturing Technology, 2010, 48, 1091- 1105.
doi: 10.1007/s00170-009-2340-0 |
27 |
DEFERSHA F M, CHEN M Y Jobshop lot streaming with routing flexibility, sequence-dependent setups, machine release dates and lag time. International Journal of Production Research, 2012, 50 (8): 2331- 2352.
doi: 10.1080/00207543.2011.574952 |
28 | WU X L, YUAN Q, WANG L. Multi-objective differential evolution algorithm for solving robotic cell scheduling problem with batch-processing machines. IEEE Trans. on Automation Science and Engineering, 2000. DOI: 10.1109/TASE.2020.2969469. |
29 |
JAMALI A, MALLIPEDDI R, SALEHPOUR M, et al Multi-objective differential evolution algorithm with fuzzy inference-based adaptive mutation factor for Pareto optimum design of suspension system. Swarm and Evolutionary Computation, 2020, 54, 100666.
doi: 10.1016/j.swevo.2020.100666 |
30 |
YUE F, SONG S J, JIA P, et al Robust single machine scheduling problem with uncertain job due dates for industrial mass production. Journal of Systems Engineering and Electronics, 2020, 31 (2): 350- 358.
doi: 10.23919/JSEE.2020.000012 |
[1] | Cuiyu WANG, Yang LI, Xinyu LI. Solving flexible job shop scheduling problem by a multi-swarm collaborative genetic algorithm [J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 261-271. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||