Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (1): 209-219.doi: 10.23919/JSEE.2021.000018
• CONTROL THEORY AND APPLICATION • Previous Articles Next Articles
Mengcan MIN(), Xiaofang CHEN*(
), Yongfang XIE(
)
Received:
2020-02-25
Online:
2021-02-25
Published:
2021-02-25
Contact:
Xiaofang CHEN
E-mail:mengcanmin@csu.edu.cn;xiaofangchen@csu.edu.cn;yfxie@csu.edu.cn
About author:
Supported by:
Mengcan MIN, Xiaofang CHEN, Yongfang XIE. Constrained voting extreme learning machine and its application[J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 209-219.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2
Testing accuracy of experimental data % "
Dataset | ELM | C-ELM | V-ELM | CV-ELM |
Iris | 93.3 | 96.0 | 94.7 | 97.1 |
Glass | 91.6 | 92.5 | 94.4 | 95.3 |
Ecoli | 85.7 | 86.3 | 88.1 | 89.3 |
Breast-can | 94.1 | 95.9 | 96.7 | 98.4 |
Balance | 90.0 | 93.4 | 91.4 | 95.5 |
Diabetes | 76.2 | 79.0 | 78.5 | 82.9 |
Proteins | 87.3 | 89.9 | 90.6 | 92.3 |
Waveform | 85.4 | 86.0 | 86.9 | 87.4 |
Table 3
Training time of experimental data s "
Dataset | ELM | C-ELM | V-ELM | CV-ELM |
Iris | 0.009 8 | 0.015 6 | 0.078 1 | 0.093 8 |
Glass | 0.312 5 | 0.046 8 | 0.184 3 | 0.246 8 |
Ecoli | 0.040 9 | 0.048 5 | 0.193 7 | 0.303 1 |
Breast-can | 0.063 1 | 0.089 7 | 0.504 9 | 0.533 4 |
Balance | 0.085 9 | 0.091 7 | 0.386 5 | 0.465 3 |
Diabetes | 0.094 5 | 0.137 4 | 0.780 9 | 0.908 3 |
Proteins | 0.145 9 | 0.185 6 | 1.617 1 | 1.962 8 |
Waveform | 0.352 8 | 0.594 0 | 2.859 4 | 3.067 5 |
Table 4
Performances of CV-ELM and several advanced learning algorithms with the public datasets"
Dataset | SVM | BP | Deep LSTM | CV-ELM | |||||||
Accuracy/ % | Training time/s | Accuracy/ % | Training time/s | Accuracy/ % | Training time/s | Accuracy/ % | Training time/s | ||||
Iris | 93.2 | 9.5931 | 93.0 | 2.860 5 | 96.4 | 10.987 5 | 97.4 | 0.093 8 | |||
Glass | 94.0 | 20.027 5 | 93.2 | 6.517 5 | 94.1 | 18.913 5 | 95.3 | 0.246 8 | |||
Ecoli | 85.9 | 13.576 8 | 80.4 | 4.971 9 | 83.6 | 11.123 1 | 89.3 | 0.303 1 | |||
Breast-can | 95.3 | 19.003 7 | 96.2 | 9.154 1 | 96.7 | 17.642 2 | 98.4 | 0.533 4 | |||
Balance | 95.7 | 16.315 9 | 91.8 | 5.847 8 | 92.3 | 19.322 5 | 95.5 | 0.465 3 | |||
Diabetes | 77.3 | 28.219 7 | 74.9 | 12.517 5 | 80.2 | 29.284 4 | 82.9 | 0.908 3 | |||
Proteins | 90.7 | 57.015 3 | 87.1 | 19.938 1 | 93.5 | 30.987 5 | 92.3 | 1.962 8 | |||
Waveform | 86.2 | 69.476 6 | 86.4 | 14.251 6 | 85.8 | 52.357 5 | 87.4 | 3.067 5 |
Table 5
Selected process variables according to operator experiences "
Number | Variable | Description |
1 | | Current working voltage |
2 | | Bath resistance |
3 | | Content of Iron |
4 | | Content of Silica |
5 | | Electrolyte level |
6 | | Molecular ratio |
7 | | Average bath voltage |
8 | | Addition amount of AlF3 |
1 | TAMURA S, TATEISHI M Capabilities of a four-layered feedforward neural network: four layers versus three. IEEE Trans. on Neural Networks, 1997, 8 (2): 251255. |
2 | WERBOS P. Beyond regression: new tools for prediction and analysis in the behavioral sciences. Cambridge, USA: Harvard University, 1974. |
3 | MORE J J. Numerical analysis. Heidelberg: Springer, 1978. |
4 |
YAO X Evolving artificial neural networks. Proceedings of the IEEE, 1999, 87 (9): 1423- 1447.
doi: 10.1109/5.784219 |
5 |
KARNIN E D A simple procedure for pruning back-propagation trained neural networks. IEEE Trans. on Neural Networks, 1990, 1 (2): 239- 242.
doi: 10.1109/72.80236 |
6 |
HSU C W, LIN C J A comparison of methods for multiclass support vector machines. IEEE Trans. on Neural Networks, 2002, 13 (2): 415- 425.
doi: 10.1109/72.991427 |
7 |
JIN B, TANG Y C, ZHANG Y Q Support vector machines with genetic fuzzy feature transformation for biomedical data classification. Information Sciences, 2007, 177 (2): 476- 489.
doi: 10.1016/j.ins.2006.03.015 |
8 | HUANG G B, ZHU Q Y, SIEW C K Extreme learning machine: theory and applications. Neurocomputing, 2006, 70 (1/3): 489- 501. |
9 | ZHANG J, DING S F, ZHANG N, et al Incremental extreme learning machine based on deep feature embedded. International Journal of Machine Learning and Cybernetics, 2015, 7 (1): 111- 120. |
10 | DING S, ZHANG N, ZHANG J, et al Unsupervised extreme learning machine with representational features. International Journal of Machine Learning and Cybernetics, 2015, 8 (2): 587- 595. |
11 | WANG B Y, ZHAO S, ZHANG S M A distributed load forecasting algorithm based on cloud computing and extreme learning machine. Power System Technology, 2014, 38 (2): 526- 531. |
12 | ZHU K, YANG H M, MENG K Short-term wind power forecast using extreme learning machine. Journal of Electric Power Science and Technology, 2019, 34 (2): 106- 111. |
13 | PAN H X, CHENG G J, CAI L Comparison of the extreme learning machine with the support vector machine for reservoir permeability prediction. Computer Engineering & Science, 2010, 32 (2): 131- 134. |
14 | ZHAO J X, QIAN Y R, NAN F Z, et al The method with CNN multilayer feature fusion and ELM diagnosis for breast diseases. Computer Engineering and Applications, 2020, 56 (4): 122- 127. |
15 |
YU D, DENG L Efficient and effective algorithms for training single-hidden-layer neural networks. Pattern Recognition Letters, 2012, 33 (5): 554- 558.
doi: 10.1016/j.patrec.2011.12.002 |
16 |
MICHE Y, SORJAMAA A, BAS P, et al OP-ELM: optimally pruned extreme learning machine. IEEE Trans. on Neural Networks, 2010, 21 (1): 158- 162.
doi: 10.1109/TNN.2009.2036259 |
17 |
LIANG N Y, HUANG G B, SARATCHANDRAN P, et al A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. on Neural Networks, 2006, 17 (6): 1411- 1423.
doi: 10.1109/TNN.2006.880583 |
18 | LAN Y, SOH Y C, HUANG G B. A constructive enhancement for online sequential extreme learning machine. Proc. of the International Joint Conference on Neural Networks, 2009. DOI: 10.1109/IJCNN.2009.5178608. |
19 | MURPHY K P. Machine learning: a probabilistic perspective. Cambridge: The MIT Press, 2012. |
20 |
POLIKAR R Ensemble based systems in decision making. IEEE Circuits and Systems Magazine, 2006, 6 (3): 21- 45.
doi: 10.1109/MCAS.2006.1688199 |
21 | HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: a new learning scheme of feedforward neural networks. Proc. of the IEEE International Joint Conference on Neural Networks, 2004. DOI: 10.1109/IJCNN.2004.1380068. |
22 | HUANG G B, CHEN L Enhanced random search based incremental extreme learning machine. Neurocomputing, 2008, 71 (16/18): 3460- 3468. |
23 |
HUANG G B, CHEN L, SIEW C K Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. on Neural Networks, 2006, 17 (4): 879- 892.
doi: 10.1109/TNN.2006.875977 |
24 |
SU Y, SHAN S G, CHEN X L, et al Classifiability-based discriminatory projection pursuit. IEEE Trans. on Neural Networks, 2011, 22 (12): 2050- 2061.
doi: 10.1109/TNN.2011.2170220 |
25 |
CAO J, LIN Z, HUANG G B, et al Voting based extreme learning machine. Information Sciences, 2012, 185 (1): 66- 77.
doi: 10.1016/j.ins.2011.09.015 |
26 |
STOSIC D, STOSIC D, LUDERMIR T Voting based q-generalized extreme learning machine. Neurocomputing, 2016, 174, 1021- 1030.
doi: 10.1016/j.neucom.2015.10.028 |
27 | HUANG G B, DING X, ZHOU H Optimization method based extreme learning machine for classification. Neurocomputing, 2010, 74 (1/3): 155- 163. |
28 | ZHU W, MIAO J, QING L Y. Constrained extreme learning machine: a novel highly discriminative random feedforward neural network. Proc. of the International Joint Conference on Neural Networks, 2014: 800–807. |
29 |
YAN Y T, ZHANG Y P, CHEN J, et al Incomplete data classification with voting based extreme learning machine. Neurocomputing, 2016, 193, 167- 175.
doi: 10.1016/j.neucom.2016.01.068 |
30 | HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: a new learning scheme of feedforward neural networks. Proc. of the IEEE International Joint Conference on Neural Networks, 2004. DOI: 10.1109/IJCNN.2004.1380068. |
31 |
ZHAO Y, WANG K K Fast cross validation for regularized extreme learning machine. Journal of Systems Engineering and Electronics, 2014, 25 (5): 895- 900.
doi: 10.1109/JSEE.2014.000103 |
32 |
TANG Y Q, XIAO S Q, ZHAN Y J Predicting settlement along railway due to excavation using empirical method and neural networks. Soils and Foundations, 2019, 59 (4): 1037- 1051.
doi: 10.1016/j.sandf.2019.05.007 |
33 |
ZHAO Z, CHEN W H, WU X, et al LSTM network: a deep learning approach for short-term traffic forecast. IET Intelligent Transport Systems, 2017, 11 (2): 68- 75.
doi: 10.1049/iet-its.2016.0208 |
34 | GUI W H, YUE W C, CHEN X F, et al Process industry knowledge automation and its applications in aluminum electrolysis production. Control Theory and Applications, 2018, 35 (7): 887- 899. |
35 |
CHEN Z G, LI Y G, CHEN X F, et al Semantic network based on intuitionistic fuzzy directed hyper-graphs and application to aluminum electrolysis cell condition identification. IEEE Access, 2017, 5, 20145- 20156.
doi: 10.1109/ACCESS.2017.2752200 |
36 | HUANG Z K, YANG C H, CHEN X F, et al Adaptive over-sampling method for classification with application to imbalanced datasets in aluminum electrolysis. Neural Computing and Applications, 2019, 32, 7183- 7199. |
37 | ZHAO S W, XIE Y F, YUE W C, et al. A machine learning method for state identification of superheat degree with flame interference. Proc. of the 10th International Symposium on High-Temperature Metallurgical Processing, 2019: 199−208. |
38 |
YUE W C, CHEN X F, GUI W H, et al A knowledge reasoning fuzzy-Bayesian network for root cause analysis of abnormal aluminum electrolysis cell condition. Frontiers of Chemical Science and Engineering, 2017, 11 (3): 414- 428.
doi: 10.1007/s11705-017-1663-x |
39 | LEI Y X, CHEN X, MIN M, et al A semi-supervised Laplacian extreme learning machine and feature fusion with CNN for industrial superheat identification. Neurocomputing, 2019, 381, 186- 195. |
40 | CAO D Y, ZENG S P, LI J H Research on prediction model of aluminum electrolyte superheat degree. Light Metals, 2010, 50 (10): 35- 38. |
41 |
HAO X C, WANG Z X, SHAN Z Y, et al Prediction of electricity consumption in cement production: a time-varying delay deep belief network prediction method. Neural Computing and Applications, 2019, 31, 7165- 7179.
doi: 10.1007/s00521-018-3540-z |
42 |
SHAMSOLMOALI P, KUMAR JAIN D, ZAREAPOOR M, et al High-dimensional multimedia classification using deep CNN and extended residual units. Multimedia Tools and Applications, 2019, 78 (17): 23867- 23882.
doi: 10.1007/s11042-018-6146-7 |
43 | LI Z, LI J Y, WANG Y, et al A deep learning approach for anomaly detection based on SAE and LSTM in mechanical equipment. The International Journal of Advanced Manufacturing Technology, 2019, 103, 499- 510. |
44 |
LIU Y S, XIA S Y, YU H, et al Prediction of aluminum electrolysis superheat based on improved relative density noise filter SMO. Proc. of the IEEE International Conference on Big Knowledge, 2018, 376- 381.
doi: 10.1109/ICBK.2018.00057 |
45 |
LEI Y X, CEN L H, CHEN X F, et al A hybrid regularization semi-supervised extreme learning machine method and its application. IEEE Access, 2019, 7, 30102- 30111.
doi: 10.1109/ACCESS.2019.2900267 |
46 |
YANG Y, WU Q M J Multilayer extreme learning machine with subnetwork nodes for representation learning. IEEE Trans. on Cybernetics, 2016, 46 (11): 2570- 2583.
doi: 10.1109/TCYB.2015.2481713 |
[1] | Xiaokai Liu, Rong Li, Chenglin Zhao, and Pengbiao Wang. Robust signal recognition algorithm based on machine learning in heterogeneous networks [J]. Journal of Systems Engineering and Electronics, 2016, 27(2): 333-342. |
[2] | Yongping Zhao and Kangkang Wang. Fast cross validation for regularized extreme learning machine [J]. Journal of Systems Engineering and Electronics, 2014, 25(5): 895-900. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||