Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (1): 163-177.doi: 10.23919/JSEE.2021.000015
• SYSTEMS ENGINEERING • Previous Articles Next Articles
Jianjiang WANG1(), Xuejun HU2,*(), Chuan HE3
Received:
2020-03-18
Online:
2021-02-25
Published:
2021-02-25
Contact:
Xuejun HU
E-mail:jianjiangwang@nudt.edu.cn;xuejun_hu@hnu.edu.cn
About author:
Supported by:
Jianjiang WANG, Xuejun HU, Chuan HE. Reactive scheduling of multiple EOSs under cloud uncertainties: model and algorithms[J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 163-177.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 3
Performance analysis on large-scale problem instances: expectation model"
Performance | Number of orbits | Number of tasks | Proactive-reactive scheduling | Proactive scheduling | |||||
Min | Ave | Max | Min | Ave | Max | ||||
Profit | 21 | 200 | 377.6 | 455.612 | 517.1 | 314.3 | 405.348 | 485.2 | |
300 | 323.5 | 398.354 | 460.7 | 272.6 | 360.194 | 435.6 | |||
400 | 363.0 | 444.708 | 512.6 | 298.5 | 397.551 | 485.5 | |||
42 | 200 | 679.5 | 762.801 | 828.9 | 540.7 | 650.689 | 751.4 | ||
300 | 752.1 | 871.550 | 948.8 | 623.0 | 742.234 | 850.1 | |||
400 | 748.8 | 840.233 | 914.8 | 572.4 | 705.377 | 826.6 | |||
Perturbation | 21 | 200 | 18.0 | 50.182 | 89.4 | 29.6 | 70.267 | 116.0 | |
300 | 10.6 | 39.285 | 72.7 | 18.0 | 52.642 | 92.4 | |||
400 | 12.8 | 42.686 | 79.0 | 20.8 | 57.980 | 100.0 | |||
42 | 200 | 38.7 | 77.059 | 120.7 | 68.8 | 127.369 | 188.0 | ||
300 | 40.6 | 78.457 | 125.0 | 76.5 | 129.736 | 188.5 | |||
400 | 27.8 | 63.480 | 105.0 | 56.0 | 110.822 | 171.2 |
Table 4
Performance analysis on large-scale problem instances: robust model"
Performance | Number of orbits | Number of tasks | Proactive-reactive scheduling | Proactive scheduling | |||||
Min | Ave | Max | Min | Ave | Max | ||||
Profit | 21 | 200 | 533.5 | 606.181 | 667.5 | 482.8 | 569.111 | 644.6 | |
300 | 774.5 | 873.819 | 955.9 | 701.8 | 814.472 | 912.1 | |||
400 | 959.6 | 1 078.932 | 1170.3 | 873.1 | 998.408 | 1107.2 | |||
42 | 200 | 684.0 | 750.485 | 801.1 | 595.1 | 683.998 | 759.9 | ||
300 | 1 000.0 | 1308.346 | 1375.5 | 1000.0 | 1223.268 | 1319.1 | |||
400 | 1 000.0 | 1583.450 | 1662.8 | 1000.0 | 1456.914 | 1576.8 | |||
Perturbation | 21 | 200 | 27.6 | 65.874 | 110.6 | 38.4 | 85.930 | 138.4 | |
300 | 50.0 | 101.452 | 160.3 | 74.8 | 134.396 | 203.2 | |||
400 | 69.8 | 125.030 | 190.6 | 102.4 | 168.062 | 243.2 | |||
42 | 200 | 23.0 | 57.938 | 97.7 | 46.0 | 94.130 | 147.6 | ||
300 | 51.4 | 94.974 | 149.9 | 80.5 | 142.220 | 208.5 | |||
400 | 78.0 | 131.198 | 194.0 | 130.4 | 205.098 | 283.2 |
1 |
BIANCHESSI N, CORDEAU J F, DESROSIERS J, et al A heuristic for the multisatellite, multi-orbit and multi-user management of earth observation satellites. European Journal of Operational Research, 2007, 177 (2): 750- 762.
doi: 10.1016/j.ejor.2005.12.026 |
2 | WANG J J, DEMEULEMEESTER E, QIU D S A pure proactive scheduling algorithm for multiple earth observation satellites under uncertainties of clouds. Computers & Operations Research, 2016, 74, 1- 13. |
3 |
HABET D, VASQUEZ M, VIMONT Y Bounding the optimum for the problem of scheduling the photographs of an agile earth observing satellite. Computational Optimization and Applications, 2010, 47 (2): 307- 333.
doi: 10.1007/s10589-008-9220-7 |
4 |
GABREL V Strengthened 0-1 linear formulation for the daily satellite mission planning. Journal of Combinatorial Optimization, 2006, 11 (3): 341- 346.
doi: 10.1007/s10878-006-7912-4 |
5 | MARINELLI F, SALVATORE N, ROSSI F, et al A Lagrange heuristic for satellite range scheduling with resource constraints. Computers & Operations Research, 2011, 38 (11): 1572- 1583. |
6 | KUCUK M, YILDIZ S T. A constraint programming approach for agile earth observation satellite scheduling problem. Proc. of the 9th International Conference on Recent Advances in Space Technologies, 2019: 613–617. |
7 |
QAMAR A, SALAH E E, BADRAN K M, et al Mission planning and scheduling for earth observation space system. International Journal of System of Systems Engineering, 2020, 10 (1): 24- 38.
doi: 10.1504/IJSSE.2020.105422 |
8 |
WOLFE J, STEPHEN S E Three scheduling algorithms applied to the earth observing systems domain. Management Science, 2000, 46 (1): 148- 168.
doi: 10.1287/mnsc.46.1.148.15134 |
9 |
BARKAOUI M, BERGER J A new hybrid genetic algorithm for the collection scheduling problem for a satellite constellation. Journal of the Operational Research Society, 2020, 71 (9): 1390- 1410.
doi: 10.1080/01605682.2019.1609891 |
10 | SARKHEYLI A, VAGHEI B G, BAGHERI A. New tabu search heuristic in scheduling earth observation satellites. Proc. of the 2nd International Conference on Software Technology and Engineering, 2010. DOI: 10.1109/ICSTE.2010.5608821. |
11 |
ZUFFEREY N, AMSTUTZ P, GIACCARI P Graph colouring approaches for a satellite range scheduling problem. Journal of Scheduling, 2008, 11 (4): 263- 277.
doi: 10.1007/s10951-008-0066-8 |
12 |
CHU X G, CHEN Y N, TAN Y J An anytime branch and bound algorithm for agile earth observation satellite onboard scheduling. Advances in Space Research, 2017, 60 (9): 2077- 2090.
doi: 10.1016/j.asr.2017.07.026 |
13 |
GABREL V, VANDERPOOTEN D Enumeration and interactive selection of efficient paths in a multiple criteria graph for scheduling an earth observing satellite. European Journal of Operational Research, 2002, 139 (3): 533- 542.
doi: 10.1016/S0377-2217(01)00188-6 |
14 | PENG G, SONG G. XING L, et al An exact algorithm for agile earth observation satellite scheduling with time-dependent profits. Computers & Operations Research, 2020, 120, 104946. |
15 | HU X H, ZHU W M, AN B, et al A branch and price algorithm for EOS constellation imaging and downloading integrated scheduling problem. Computers & Operations Research, 2019, 104, 74- 89. |
16 | ZHU W M, HU X X, XIA W, et al A three-phase solution method for the scheduling problem of using earth observation satellites to observe polygon requests. Computers & Industrial Engineering, 2019, 130, 97- 107. |
17 | ZHAO Y B, DU B, LI S Agile satellite mission planning via task clustering and double-layer tabu algorithm. Computer Modeling in Engineering & Sciences, 2020, 122 (1): 235- 257. |
18 |
SALMAN A A, AHMAD I, OMRAN M G A metaheuristic algorithm to solve satellite broadcast scheduling problem. Information Sciences, 2015, 322, 72- 91.
doi: 10.1016/j.ins.2015.06.016 |
19 |
LI Z L, LI X J A multi-objective binary-encoding differential evolution algorithm for proactive scheduling of agile earth observation satellites. Advances in Space Research, 2019, 63 (10): 3258- 3269.
doi: 10.1016/j.asr.2019.01.043 |
20 |
WU K, ZHANG D X, CHEN Z H, et al Multi-type multi-objective imaging scheduling method based on improved NSGA-Ⅲ for satellite formation system. Advances in Space Research, 2019, 63 (8): 2551- 2565.
doi: 10.1016/j.asr.2019.01.006 |
21 | WU G H, LIU J, MA M H, et al A two phase scheduling method with the consideration of task clustering for earth observing satellites. Computers & Operations Research, 2013, 40 (7): 1884- 1894. |
22 | ZHANG Z J, HU F N, ZHANG N Ant colony algorithm for satellite control resource scheduling problem. Applied Intelligence, 2018, 48 (10): 1- 11. |
23 |
TANGPATTANAKUL P, JOZEFOWIEZ N, LOPEZ P A multi-objective local search heuristic for scheduling earth observations taken by an agile satellite. European Journal of Operational Research, 2015, 245 (2): 542- 554.
doi: 10.1016/j.ejor.2015.03.011 |
24 | LIU X L, LAPORTE G, CHEN Y W, et al An adaptive large neighborhood search metaheuristic for agile satellite scheduling with time-dependent transition time. Computers & Operations Research, 2017, 86, 41- 53. |
25 | HE L, LIU X L, LAPORTE G, et al An improved adaptive large neighborhood search algorithm for multiple agile satellites scheduling. Computers & Operations Research, 2018, 100, 12- 25. |
26 | PENG G S, DEWIL R, VERBEECK C, et al Agile earth observation satellite scheduling: an orienteering problem with time-dependent profits and travel times. Computers & Operations Research, 2019, 111, 84- 98. |
27 | GLOBUS A, CRAWFORD J, LOHN J, et al A comparison of techniques for scheduling fleets of earth-observing. Journal of the Operational Research Society, 2003, 56 (8): 962- 968. |
28 |
ZHU W, HU X, XIA W, et al A two-phase genetic annealing method for integrated earth observation satellite scheduling problems. Soft Computing, 2019, 23 (1): 181- 196.
doi: 10.1007/s00500-017-2889-8 |
29 | WU G H, WANG H L, PEDRYCZ W, et al Satellite observation scheduling with a novel adaptive simulated annealing algorithm and a dynamic task clustering strategy. Computers & Industrial Engineering, 2017, 113, 576- 588. |
30 |
WANG J, ZHU X, QIU D, et al Dynamic scheduling for emergency tasks on distributed imaging satellites with task merging. IEEE Trans. on Parallel and Distributed Systems, 2014, 25 (9): 2275- 2285.
doi: 10.1109/TPDS.2013.156 |
31 |
WANG J J, ZHU X M, YANG L T, et al Towards dynamic real-time scheduling for multiple earth observation satellites. Journal of Computer and System Sciences, 2015, 81 (1): 110- 124.
doi: 10.1016/j.jcss.2014.06.016 |
32 |
XIE P, WANG H, CHEN Y N, et al A heuristic algorithm based on temporal conflict network for agile Earth observing satellite scheduling problem. IEEE Access, 2019, 7, 61024- 61033.
doi: 10.1109/ACCESS.2019.2902669 |
33 |
HE Y M, CHEN Y W, LU J M, et al Scheduling multiple agile earth observation satellites with an edge computing framework and a constructive heuristic algorithm. Journal of Systems Architecture, 2019, 95, 55- 66.
doi: 10.1016/j.sysarc.2019.03.005 |
34 |
KARAPETYAN D, MINIC S M, MALLADI K T, et al Satellite downlink scheduling problem: a case study. Omega, 2015, 53, 115- 123.
doi: 10.1016/j.omega.2015.01.001 |
35 |
SUN H Q, XIA W, HU X X, et al Earth observation satellite scheduling for emergency tasks. Journal of Systems Engineering and Electronics, 2019, 30 (5): 931- 945.
doi: 10.21629/JSEE.2019.05.11 |
36 |
BEAUMET G, VERFAILLIE G, CHARMEAU M C Feasibility of autonomous decision making on board an agile earth-observing satellite. Computation Intelligence, 2011, 27 (1): 123- 139.
doi: 10.1111/j.1467-8640.2010.00375.x |
37 |
LIN W C, LIAO D Y, LIU C Y, et al Daily imaging scheduling of an Earth observation satellite. IEEE Trans. on Systems Man and Cybernetics Part A—Systems and Humans, 2005, 35 (2): 213- 223.
doi: 10.1109/TSMCA.2005.843380 |
38 | LEMAITRE M, VERFAILLIE G, JOUHAUD F, et al. How to manage the new generation of agile earth observation satellites. Proc. of the International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2000. DOI: 10.1002/ppsc.201300352. |
39 |
LIAO D Y, TANG Y Imaging order scheduling of an earth observation satellite. IEEE Trans. on Systems Man and Cybernetics Part C—Applications and Reviews, 2007, 37 (5): 794- 802.
doi: 10.1109/TSMCC.2007.900668 |
40 |
VALICKA C G, GARCIA D, STAID A, et al Mixed-integer programming models for optimal constellation scheduling given cloud cover uncertainty. European Journal of Operational Research, 2019, 275 (2): 431- 445.
doi: 10.1016/j.ejor.2018.11.043 |
41 |
WANG J J, DEMEULEMEESTER E, HU X J, et al Exact and heuristic scheduling algorithms for multiple earth observation satellites under uncertainties of clouds. IEEE Systems Journal, 2019, 13 (3): 3556- 3567.
doi: 10.1109/JSYST.2018.2874223 |
42 |
WANG J J, DEMEULEMEESTER E, HU X J, et al Expectation and SAA models and algorithms for scheduling of multiple Earth observation satellites under the impact of clouds. IEEE Systems Journal, 2020, 14 (4): 5451- 5462.
doi: 10.1109/JSYST.2019.2961236 |
43 | SAMIMI A, NIKZAD M Complete active-reactive power resource scheduling of smart distribution system with high penetration of distributed energy resources. Journal of Modern Power Systems & Clean Energy, 2017, 5 (6): 863- 875. |
44 |
HU X J, WANG J J, LENG K J The interaction between critical chain sequencing, buffer sizing, and reactive actions in a CC/BM framework. Asia Pacific Journal of Operational Research, 2019, 36 (3): 1950010.
doi: 10.1142/S0217595919500106 |
45 | PAPROCKA I, KEMPA W M. Searching for a method of basic schedules generation which influences over the performance of predictive and reactive schedules. Proc. of the 37th International Conference on Information Systems Architecture and Technology, 2017: 233–242. |
46 |
VIERIA G E, HERRMANN J W, LIN E Rescheduling manufacturing systems: a framework of strategies, policies and methods. Journal of Scheduling, 2003, 6 (1): 39- 62.
doi: 10.1023/A:1022235519958 |
[1] | Jiaxin HU, Leping YANG, Huan HUANG, Yanwei ZHU. Optimal reconfiguration of constellation using adaptive innovation driven multiobjective evolutionary algorithm [J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1527-1538. |
[2] | Zining WANG, Min LIN, Xiaogang TANG, Kefeng GUO, Shuo HUANG, Ming CHENG. Multi-objective robust secure beamforming for cognitive satellite and UAV networks [J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 789-798. |
[3] | Zikai ZHANG, Qiuhua TANG, Zixiang LI, Dayong HAN. An efficient migrating birds optimization algorithm with idle time reduction for Type-I multi-manned assembly line balancing problem [J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 286-296. |
[4] | Shiyun LI, Sheng ZHONG, Zhi PEI, Wenchao YI, Yong CHEN, Cheng WANG, Wenzhu ZHANG. Multi-objective reconfigurable production line scheduling for smart home appliances [J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 297-317. |
[5] | Jian WU, Fang LU, Jiawei ZHANG, Jiawei ZHANG, Lining XING. Design of task priority model and algorithm for imaging observation problem [J]. Journal of Systems Engineering and Electronics, 2020, 31(2): 321-334. |
[6] | Zhen XU, Enze ZHANG, Qingwei CHEN. Rotary unmanned aerial vehicles path planning in rough terrain based on multi-objective particle swarm optimization [J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 130-141. |
[7] | Hongwei LI, Jianyong LIU, Liang CHEN, Jingbo BAI, Yangyang SUN, Kai LU. Chaos-enhanced moth-flame optimization algorithm for global optimization [J]. Journal of Systems Engineering and Electronics, 2019, 30(6): 1144-1159. |
[8] | Yan'gang LIANG, Zheng QIN. A decision support system for satellite layout integrating multi-objective optimization and multi-attribute decision making [J]. Journal of Systems Engineering and Electronics, 2019, 30(3): 535-544. |
[9] | Jiale GAO, Qinghua XING, Chengli FAN, Zhibing LIANG. Double adaptive selection strategy for MOEA/D [J]. Journal of Systems Engineering and Electronics, 2019, 30(1): 132-143. |
[10] | Jiting Li, Sheng Zhang, Xiaolu Liu, and Renjie He. Multi-objective evolutionary optimization for geostationary orbit satellite mission planning [J]. Systems Engineering and Electronics, 2017, 28(5): 934-945. |
[11] | Ying Zhang, Rennong Yang, Jialiang Zuo, and Xiaoning Jing. Enhancing MOEA/D with uniform population initialization, weight vector design and adjustment using uniform design [J]. Journal of Systems Engineering and Electronics, 2015, 26(5): 1010-1022. |
[12] | Haipeng Ren* and Yang Zhao. Immune particle swarm optimization of linear frequency modulation in acoustic communication [J]. Systems Engineering and Electronics, 2015, 26(3): 450-456. |
[13] | Aijun Zhu, Chuanpei Xu, Zhi Li, JunWu, and Zhenbing Liu. Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC [J]. Journal of Systems Engineering and Electronics, 2015, 26(2): 317-328. |
[14] | Lixia Han, Shujuan Jiang, and Shaojiang Lan. Novel electromagnetism-like mechanism method for multiobjective optimization problems [J]. Journal of Systems Engineering and Electronics, 2015, 26(1): 182-. |
[15] | Xiaoxue Zhang, Shu Tang, Aimin Luo, and Xueshan Luo. System deployment optimization in architecture design [J]. Journal of Systems Engineering and Electronics, 2014, 25(2): 237-248. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||