1 |
TAO F, WANG T, WU J, et al A knowledge aided SPICE space time adaptive processing method for airborne radar with conformal array. Signal Processing, 2018, 152, 54- 62.
doi: 10.1016/j.sigpro.2018.05.015
|
2 |
DONG J Z, WANG Y W, MENG F J, et al. A research on airborne conformal array with high gain and low SLL. Proc. of the International Conference on Computational Intelligence and Communication Networks, 2014: 334−338.
|
3 |
LI Y W, XIE W C, MAO H H, et al Clutter suppression approach for end-fire array airborne radar based on adaptive segmentation. IEEE Access, 2019, 7, 147094- 147105.
doi: 10.1109/ACCESS.2019.2946465
|
4 |
BRENNAN L E, REED L S Theory of adaptive radar. IEEE Trans. on Aerospace and Electronic Systems, 1973, 9 (2): 237- 252.
|
5 |
BORSARI G K. Mitigating effects on STAP processing caused by an inclined array. Proc. of the IEEE Radar Conference, 1998: 135−140.
|
6 |
HIMED B, ZHANG Y, HAJJARI A. STAP with angle-Doppler compensation for bistatic airborne radars. Proc. of the IEEE Radar Conference, 2002: 311−317.
|
7 |
BEAU S, MARCOS S Taylor series expansions for airborne radar space-time adaptive processing. IET Radar, Sonar & Navigation, 2011, 5 (3): 266- 278.
|
8 |
HAN X D, LUO D, SHU T, et al Space-time adaptive processing for airborne radar with conformal array. Proc. of the IET International Radar Conference, 2015, 1- 5.
|
9 |
XIE W C, DUAN K Q, GAO F, et al Clutter suppression for airborne phased radar with conformal arrays by least squares estimation. Signal Processing, 2011, 91 (7): 1665- 1669.
doi: 10.1016/j.sigpro.2011.01.009
|
10 |
VARADARAJAN V, KROLIK J L Joint space-time interpolation for distorted linear and bistatic array geometries. IEEE Trans. on Signal Processing, 2006, 54 (3): 848- 860.
doi: 10.1109/TSP.2005.862941
|
11 |
LIU J H, LIAO G S, WANG Q Forward-looking airborne radar antenna error robust space-time interpolation compensation method. Systems Engineering and Electronics, 2014, 36 (12): 2388- 2392.
|
12 |
JIANG H, LIAO G S, QU Y. Compensation of clutter spectrum for forward-looking radar based on the spatial steering vector fitting. Proc. of the IET International Radar Conference, 2009: 1−4.
|
13 |
VARADARAJAN V, KROLIK J L. Space-time interpolation for adaptive arrays with limited training data. Proc. of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003: 353.
|
14 |
LIU J H, LIAO G S, LI M Space-time separated interpolation method for forward-looking airborne radar clutter spectrum. Journal of Electronics & Information Technology, 2011, 33 (9): 2120- 2124.
|
15 |
XIN Z H, LIAO G S, YANG Z W Analysis of the effect of the fuselage conformal frustum array structure on the property of the ground clutter spectrum. Systems Engineering and Electronics, 2016, 38 (7): 1481- 1487.
|
16 |
DUAN K Q, XIE W C, WANG Y L. Analysis and suppression for nonstationary clutter in airborne conformal array radar. Proc. ofthe 10th IEEE International Conference on Signal Processing Proceedings, 2010: 2087−2091.
|
17 |
DUAN K Q, XIE W C, WANG Y L. Modeling and suppression of clutter for airborne fire control radar with conformal antennas array. Proc. of the IEEE CIE International Conference on Radar, 2011: 1102−1106.
|
18 |
XIE W C, WANG Y L. Space-time adaptive processing for non-sidelooking airborne radar with HPRF. Proc. of the IEEE Aerospace Conference, 2007: 1−7.
|
19 |
XU J W, ZHU S Q, LIAO G S Space-time-range adaptive processing for airborne radar systems. IEEE Sensors Journal, 2015, 15 (3): 1602- 1610.
doi: 10.1109/JSEN.2014.2364594
|
20 |
FENG K J, WANG C Y, DUAN Y L, et al Research on the OP-DW algorithm of bistatic radar and its performance. Ecta Electronica Sinica, 2011, 39 (3): 700- 704.
|
21 |
DAI B Q, WANG T, WU Y F, et al Clutter suppression approach for non-sidelooking airborne radar with medium pulse repetition frequency. IET Radar, Sonar & Navigation, 2014, 8 (9): 999- 1007.
|
22 |
HALE T B, TEMPLE M A, RAQUET J F, et al Localised three-dimensional adaptive spatial-temporal processing for airborne radar. Proc. of the IEE Radar, Sonar & Navigation, 2003, 150 (1): 18- 22.
|
23 |
ZHANG X D. Matrix analysis and applications. 2nd Ed. Beijing: Tsinghua University Press, 2013. (in Chinese)
|
24 |
AINSLEIGH P L Observations on oblique projectors and pseudoinverses. IEEE Trans. on Signal Processing, 1997, 45 (7): 1886- 1889.
doi: 10.1109/78.599966
|
25 |
PENG C Y, ZHANG X D On recursive oblique projectors. IEEE Signal Processing Letters, 2005, 12 (6): 433- 436.
doi: 10.1109/LSP.2005.847891
|
26 |
STEWART G W On the numerical analysis of oblique projectors. SIAM Journal on Matrix Analysis and Applications, 2011, 32 (1): 309- 348.
doi: 10.1137/100792093
|
27 |
DIPIETRO R C. Extended factored space-time processing for airborne radar systems. Proc. of the 26th Asilomar Conference on Signals, Systems and Computers, 1992: 425−430.
|