Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (1): 21-30.doi: 10.23919/JSEE.2021.000003
• ELECTRONICS TECHNOLOGY • Previous Articles Next Articles
Xiaojiao PANG(), Yongbo ZHAO*(), Chenghu CAO(), Baoqing XU(), Yili HU()
Received:
2019-11-04
Online:
2021-02-25
Published:
2021-02-25
Contact:
Yongbo ZHAO
E-mail:1964230291@qq.com;ybzhao@xidian.edu.cn;764161366@qq.com;835569607@qq.com;huyili66@126.com
About author:
Supported by:
Xiaojiao PANG, Yongbo ZHAO, Chenghu CAO, Baoqing XU, Yili HU. STAP method based on atomic norm minimization with array amplitude-phase error calibration[J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 21-30.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Radar system parameters"
Parameter | Value |
Carrier frequency/MHz | 450 |
Carrier wavelength/m | 0.667 |
Antenna array spacing/m | 0.333 |
PRF/Hz | 300 |
Platform velocity/(m/s) | 50 |
Platform height/m | 3000 |
Clutter-to-noise ratio (CNR)/dB | 40 |
Target angle/(°) | 0 |
SNR/dB | 0 |
Number of elements in ULA | 8 |
Number of pulses in one CPI | 8 |
1 | WARD J. Space-time adaptive processing for airborne radar. ESC-TR-94-109. Lexington: Lincoln Laboratory, 1994. |
2 | KLEMM R. Principles of space-time adaptive processing. London: The Institution of Electrical Engineers, 2006. |
3 | BRENNA L E, REED I S Theory of adaptive radar. IEEE Trans. on Aerospace & Electronic System, 1973, 9 (2): 237- 252. |
4 |
KLEMM R Adaptive airborne MTI: an auxiliary channel approach. IEEE Proceeding F: Communications, Radar and Signal Processing, 1987, 134 (3): 269- 276.
doi: 10.1049/ip-f-1.1987.0054 |
5 |
WANG Y X, LI X M, GAO W Dimension-reduced bi-iterative space-time adaptive processing method for airborne radar. The Journal of Engineering, 2019, 2019 (21): 8138- 8141.
doi: 10.1049/joe.2019.0718 |
6 | WANG X, YANG Z, YANG J X Reduced-dimension space-time adaptive processing for airborne radar with co-prime array. The Journal of Engineering, 2019, 2019 (10): 5971- 5974. |
7 |
HUA Y, NIKPOUR M, STOICA P Optimal reduced rank estimation and filtering. IEEE Trans. on Signal Processing, 2001, 49 (3): 457- 469.
doi: 10.1109/78.905856 |
8 |
SARKAR T K A deterministic least-squares approach to space-time adaptive processing (STAP). IEEE Trans. on Antennas Propagation, 2001, 49 (1): 91- 103.
doi: 10.1109/8.910535 |
9 | MEVIN W L, SHOWMAN G A An approach to knowledge-aided covariance estimation. IEEE Trans. on Aerospace & Electronic System, 2006, 42 (3): 1021- 1042. |
10 |
GUERCI J R, BARANOSKI E J Knowledge-aided adaptive radar at DARPA: an overview. IEEE Signal Processing Magazine, 2006, 23 (1): 41- 50.
doi: 10.1109/MSP.2006.1593336 |
11 |
STOICA P, LI J, ZHU X, et al On using a prior knowledge in space-time adaptive processing. IEEE Trans. on Signal Processing, 2008, 56 (6): 2598- 2602.
doi: 10.1109/TSP.2007.914347 |
12 |
YANG Z C, LI X, WANG H Q, et al On clutter sparsity analysis in space-time adaptive processing airborne radar. IEEE Geoscience and Remote Sensing Letters, 2013, 10 (5): 1214- 1218.
doi: 10.1109/LGRS.2012.2236639 |
13 |
SEN S Low-rank matrix decomposition and spatio-temporal sparse recovery for STAP radar. IEEE Journal of Selected Topics in Signal Processing, 2015, 9 (8): 1510- 1523.
doi: 10.1109/JSTSP.2015.2464187 |
14 |
YANG Z C, LI X, WANG H Q, et al Adaptive clutter suppression based on iterative adaptive approach for airborne radar. Signal Processing, 2013, 93 (12): 3567- 3577.
doi: 10.1016/j.sigpro.2013.03.033 |
15 |
WU Q S, ZHANG Y D, AMIN M G, et al Space-time adaptive processing and motion parameter estimation in multistatic passive radar using sparse Bayesian learning. IEEE Trans. on Geoscience Remote Sensing, 2016, 54 (2): 944- 957.
doi: 10.1109/TGRS.2015.2470518 |
16 | SUN K, MENG H D, WANG Y L Direct data domain STAP using sparse representation of clutter spectrum. Signal Processing, 2001, 91 (9): 2222- 2236. |
17 |
FENG W K, ZHANG Y, HE X Cascaded clutter and jamming suppression method using sparse representation. Electronics Letters, 2015, 51 (19): 1524- 1526.
doi: 10.1049/el.2015.1853 |
18 | WANG X Y, YANG Z C, HUANG J J. Sparsity-based space-time adaptive processing for airborne radar with coprime array and coprime pulse repetition interval. Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2018: 3310–3314. |
19 |
DUAN K Q, WANG Z T, XIE W C Sparsity-based STAP algorithm with multiple measurement vectors via sparse Bayesian learning strategy for airborne radar. IET Signal Processing, 2017, 11 (5): 544- 553.
doi: 10.1049/iet-spr.2016.0183 |
20 |
WANG Z T, XIE W C, DUAN K Q Clutter suppression algorithm based on fast converging sparse Bayesian learning for airborne radar. Signal Processing, 2017, 130 (1): 159- 168.
doi: 10.1016/j.sigpro.2016.06.023 |
21 |
GUO Y D, LIAO G S, FENG W K Sparsity representation based algorithm for airborne radar in beam-space post-Doppler reduced-dimension space-time adaptive processing. IEEE Access, 2017, 5, 5896- 5903.
doi: 10.1109/ACCESS.2017.2689325 |
22 | WANG X, YANG Z, HE K, et al. A low complexity space-time adaptive processing with sparse constraint based on conjugate gradient techniques. Proc. of the 14th IEEE International Conference on Signal Processing, 2018: 898–902. |
23 | CHAE D H, SADEGHI P, KENNEDY R A. Effects of basis-mismatch in compressive sampling of continuous sinusoidal signals. Proc. of the 2nd International Conference on Future Computer and Communication, 2010: 739–743. |
24 | FENG W K, GUO Y D, ZHANG Y S, et al. Airborne radar space time adaptive processing based on atomic norm minimization. Signal Processing, 2018, 148: 31–40. |
25 | GU Y, ZHANG Y D. Atomic decomposition-based sparse recovery for space-time adaptive processing. Proc. of the 52nd Asilomar Conference on Signals, Systems, and Computers, 2018: 1116–1120. |
26 | PAN J, TANG J, LI W, et al. Sparse clutter for STAP based on decouple atomic norm minimization. Proc. of the International Conference on Radar, 2018. DOI: 10.1109/RADAR.2018.8557229. |
27 | ZHU Y A, YANG Z C, HUANG J J. Sparsity-based space-time adaptive processing considering array gain/phase error. Proc. of the CIE International Conference on Radar, 2016. DOI: 10.1109/RADAR.2016.8059406. |
28 |
MA Z Q, LIU Y M, MENG H D, et al Sparse recovery-based space-time adaptive processing with array error self-calibration. Electronics Letters, 2014, 50 (13): 952- 954.
doi: 10.1049/el.2014.0315 |
29 |
TANG G, BHASKAR B, SHAH P, et al Compressed sensing off the grid. IEEE Trans. on Information Theory, 2013, 59 (11): 7465- 7490.
doi: 10.1109/TIT.2013.2277451 |
30 |
CHI Y J, CHEN Y X Compressive two-dimensional harmonic retrieval via atomic norm minimization. IEEE Trans. on Signal Processing, 2015, 63 (4): 1030- 1042.
doi: 10.1109/TSP.2014.2386283 |
31 | TITI G W, MARSHALL D F. The ARPA/NAVY mountaintop program: adaptive signal processing for airborne early warning radar. Proc. of the IEEE International Conference on Acoustic, Speech and Signal Processing, 1996: 1165–1168. |
[1] | Deping XIA, Liang ZHANG, Tao WU, Wenjun HU. An interference suppression algorithm for cognitive bistatic airborne radars [J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 585-593. |
[2] | Weijian Liu, Wenchong Xie, Haibo Tong, Honglin Wang, Cui Zhou, and Yongliang Wang. Adaptive coherence estimator based on the Krylov subspace technique for airborne radar [J]. Journal of Systems Engineering and Electronics, 2015, 26(4): 705-. |
[3] | Hongwei Zhao, Baowang Lian, and Juan Feng. Adaptive beamforming and phase bias compensation for GNSS receiver [J]. Journal of Systems Engineering and Electronics, 2015, 26(1): 10-. |
[4] | Yan Zhang, Yunhua Zhang, and Xiang Gu. Improved STAP algorithm based on APES [J]. Journal of Systems Engineering and Electronics, 2011, 22(3): 387-392. |
[5] | Zhiwei Yang, Guisheng Liao, Shun He, and Cao Zeng. Target location with signal fitting and sub-aperture tracking for airborne multi-channel radar [J]. Journal of Systems Engineering and Electronics, 2010, 21(5): 752-758. |
[6] | Cao Jianshu & Wang Xuegang. Diagonally loaded SMI algorithm based on inverse matrix recursion [J]. Journal of Systems Engineering and Electronics, 2007, 18(1): 160-163. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||