Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (1): 7-20.doi: 10.23919/JSEE.2021.000002
• ELECTRONICS TECHNOLOGY • Previous Articles Next Articles
Zhao SUN1(), Chao MA1,*(), Liang WANG2(), Ran MENG3(), Shanshan PEI1()
Received:
2020-02-08
Online:
2021-02-25
Published:
2021-02-25
Contact:
Chao MA
E-mail:sun.zhao.must@gmail.com;cma@must.edu.mo;wangliang18@baidu.com;ran.meng@smartereye.com;pei.shanshan.must@gmail.com
About author:
Supported by:
Zhao SUN, Chao MA, Liang WANG, Ran MENG, Shanshan PEI. A deep learning-based binocular perception system[J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 7-20.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 3
End-to-end deep learning networks for obstacle detection % "
Method | Vehicle | Pedestrian | Bike | Others | |||||||
Precision | Recall | Precision | Recall | Precision | Recall | Precision | Recall | ||||
SSD [ | 92.33 | 83.98 | 84.87 | 77.69 | 91.67 | 78.57 | 60.64 | 19.79 | |||
YOLO [ | 94.17 | 87.60 | 88.79 | 79.23 | 91.18 | 85.16 | 73.13 | 34.03 | |||
Faster R-CNN [ | 95.43 | 91.73 | 92.00 | 88.46 | 93.21 | 82.97 | 74.23 | 25.00 | |||
Ours | 92.86 | 90.70 | 82.44 | 83.08 | 90.59 | 84.62 | 82.14 | 87.95 |
Table 5
Runtime of modules"
GPU Frequency/ MHz | Stereo matching module/ms | Obstacle extraction module/ms | Operation efficiency/fps | |||||
Origin MPV algorithm | Our proposed improvement | Origin VGG model | Our proposed improvement | Origin MPV + VGG | Our proposed improvement | |||
324 | 241 | 96 | 784 | 265 | 1 | 2.7 | ||
852 | 147 | 55 | 431 | 161 | 1.7 | 4.5 |
1 |
IM J H, IM S H, JEE G I Vertical corner feature based precise vehicle localization using 3D LIDAR in urban area. Sensors, 2016, 16 (8): 1268.
doi: 10.3390/s16081268 |
2 | LI B, ZHANG T L, XIA T. Vehicle detection from 3D lidar using fully convolutional network. [2020-01-15]. https://arxiv.org/pdf/1608.07916.pdf. |
3 |
HATA A Y, WOLF D F Feature detection for vehicle localization in urban environments using a multilayer lidar. IEEE Trans. on Intelligent Transportation Systems, 2016, 17 (2): 420- 429.
doi: 10.1109/TITS.2015.2477817 |
4 |
ALESSANDRETTI G, BROGGI A, CERRI P Vehicle and guard rail detection using radar and vision data fusion. IEEE Trans. on Intelligent Transportation Systems, 2007, 8 (1): 95- 105.
doi: 10.1109/TITS.2006.888597 |
5 | KRSTANOVIC C, KELLER S, GROFT E Radar vehicle detection system. US Patent, 2012, 8279107. |
6 | LONG Q, XIE Q W, MITA S, et al A real-time dense stereo matching method for critical environment sensing in autonomous driving. Proc. of the IEEE International Conference on Intelligent Transportation Systems, 2014, 853- 860. |
7 |
MOIZUMI H, SUGAYA Y, OMACHI M, et al Traffic light detection considering color saturation using in-vehicle stereo camera. Journal of Information Processing, 2016, 24 (2): 349- 357.
doi: 10.2197/ipsjjip.24.349 |
8 | WELLER A D, LARSON M L, MCCABE I A, et al Vision system for vehicle. US Patent, 2018, 10053013. |
9 | BLAKE R, WILSON H Binocular vision. Vision Research, 2011, 51 (7): 754- 770. |
10 | STROBL K H, HIRZINGER G More accurate pinhole camera calibration with imperfect planar target. Proc. of the IEEE International Conference on Computer Vision Workshops, 2011, 1068- 1075. |
11 |
XIE Q W, LONG Q, MITA S Integration of optical flow and multi-path-viterbi algorithm for stereo vision. International Journal of Wavelets, Multiresolution and Information Processing, 2017, 15 (3): 1750022.
doi: 10.1142/S0219691317500229 |
12 | LUO J H, WU J X. An entropy-based pruning method for CNN compression. [2020-01-15]. https://arxiv.org/pdf/1706.05791.pdf. |
13 | WU J X, LENG C, WANG Y H, et al Quantized convolutional neural networks for mobile devices. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, 4820- 4828. |
14 | GELADO I, STONE J E, CABEZAS J, et al. An asymmetric distributed shared memory model for heterogeneous parallel systems. Proc. of the 15th International Conference on Architectural Support for Programming Languages and Operating Systems, 2010: 347–358. |
15 | POWER J, BASU A, GU J, et al. Heterogeneous system coherence for integrated CPU-GPU systems. Proc. of the 46th Annual IEEE/ACM International Symposium on Microarchitecture, 2013: 457−467. |
16 | VINEET V, NARAYANAN P CUDA cuts: fast graph cuts on the GPU. Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008, 1- 8. |
17 | KIRK D NVIDIA CUDA software and GPU parallel computing architecture. Proc. of the 6th International Symposium on Memory Management, 2007, 103- 104. |
18 | XIE Q W, LONG Q, ZHANG L M, et al. A robust real-time computing-based environment sensing system for intelligent vehicle. [2020-02-01]. https://arxiv.org/pdf/2001.09678.pdf. |
19 |
ZHAO B J, ZHAO B Y, TANG L B, et al Multi-scale object detection by top-down and bottom-up feature pyramid network. Journal of Systems Engineering and Electronics, 2019, 30 (1): 1- 12.
doi: 10.21629/JSEE.2019.01.01 |
20 |
WANG Z, BOVIK A C, SHEIKH H R, et al Image quality assessment: from error visibility to structural similarity. IEEE Trans. on Image Processing, 2004, 13 (4): 600- 612.
doi: 10.1109/TIP.2003.819861 |
21 | VIOLA P A, JONES M J. Rapid object detection using a boosted cascade of simple features. Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001. DOI:10.1109/CVPR.2001.990517. |
22 |
DATE K, NAGI R Level 2 reformulation linearization technique-based parallel algorithms for solving large quadratic assignment problems on graphics processing unit clusters. INFORMS Journal on Computing, 2019, 31 (4): 771- 789.
doi: 10.1287/ijoc.2018.0866 |
23 |
LOWE D G Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60 (2): 91- 110.
doi: 10.1023/B:VISI.0000029664.99615.94 |
24 |
ALTUN M, CELENK M Road scene content analysis for driver assistance and autonomous driving. IEEE Trans. on Intelligent Transportation Systems, 2017, 18 (12): 3398- 3407.
doi: 10.1109/TITS.2017.2688352 |
25 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector. [2020-01-15]. https://arxiv.org/pdf/1512.02325.pdf?ref=hackernoon.com. |
26 | REDMON J, FARHADI A. YOLOv3: an incremental improvement. [2020-01-15]. https://arxiv.org/pdf/1804.02767.pdf. |
27 |
REN S Q, HE K M, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031 |
28 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition. [2020-01-15]. https://arxiv.org/pdf/1409.1556.pdf%20http://arxiv.org/abs/1409.1556.pdf. |
29 |
SHIN H C, ROTH H, GAO M C, et al Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. on Medical Imaging, 2016, 35 (5): 1285- 1298.
doi: 10.1109/TMI.2016.2528162 |
30 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E ImageNet classification with deep convolutional neural networks. Proc. of the 25th International Conference on Neural Information Processing Systems, 2012, 1097- 1105. |
31 | HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors. [2020-01-15]. https://arxiv.org/pdf/1207.0580.pdf. |
32 | LIU H, WANG Y L, WANG X, et al Deep learning model of support vector machines with probability output networks. Systems Engineering— Theory and Practice, 2018, 38 (8): 2147- 2154. |
33 | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift. Proc. of the International Conference on Machine Learning, 2015: 448–456. |
34 | TAJBAKHSH N, SHIN J Y, GURUDU S R, et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. on Medical Imaging, 2016, 35(5):1299–1312. |
35 |
SPACEY S, WIESEMANN W, KUHN D, et al Robust software partitioning with multiple instantiation. INFORMS Journal on Computing, 2012, 24 (3): 500- 515.
doi: 10.1287/ijoc.1110.0467 |
36 |
BOSCHETTI M A, MANIEZZO V, STRAPPAVECCIA F Using GPU computing for solving the two-dimensional guillotine cutting problem. INFORMS Journal on Computing, 2016, 28 (3): 540- 552.
doi: 10.1287/ijoc.2016.0693 |
37 |
ZHANG Y F, GAO Q X, GAO L X, et al Imapreduce: a distributed computing framework for iterative computation. Journal of Grid Computing, 2012, 10 (1): 47- 68.
doi: 10.1007/s10723-012-9204-9 |
38 | CHEN X, XIE Q W, SHEN L J, et al Morphology-retained non-linear image registration of serial electron microscopy sections. Proc. of the IEEE International Conference on Image Processing, 2018, 3833- 3837. |
39 | KSHEMKALYANI A D, SINGHAL M. Distributed computing: principles, algorithms, and systems. Cambridge: Cambridge University Press, 2011. |
40 |
LI Z F, LI D, XU X L, et al New normalized LMS adaptive filter with a variable regularization factor. Journal of Systems Engineering and Electronics, 2019, 30 (2): 259- 269.
doi: 10.21629/JSEE.2019.02.05 |
[1] | Haifen YANG, Hao ZHANG, Houjun WANG, Zhengyang GUO. A novel approach for unlabeled samples in radiation source identification [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 354-359. |
[2] | Tao YE, Zongyang ZHAO, Jun ZHANG, Xinghua CHAI, Fuqiang ZHOU. Low-altitude small-sized object detection using lightweight feature-enhanced convolutional neural network [J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 841-853. |
[3] | Hongyin SHI, Yue LIU, Jianwen GUO, Mingxin LIU. ISAR autofocus imaging algorithm for maneuvering targets based on deep learning and keystone transform [J]. Journal of Systems Engineering and Electronics, 2020, 31(6): 1178-1185. |
[4] | Chuan LIN, Qing CHANG, Xianxu LI. Uplink NOMA signal transmission with convolutional neural networks approach [J]. Journal of Systems Engineering and Electronics, 2020, 31(5): 890-898. |
[5] | Liangkui LIN, Shaoyou WANG, Zhongxing TANG. Using deep learning to detect small targets in infrared oversampling images [J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 947-952. |
[6] | Chongsheng Zhang, Pengyou Wang, Ke Chen, and Joni-Kristian K¨am¨ ar¨ainen. Identity-aware convolutional neural networks for facial expression recognition [J]. Systems Engineering and Electronics, 2017, 28(4): 784-. |
[7] | Tian Jinsi & Su Jianbo. Feature point matching of curved surface and robust uncertainty * [J]. Journal of Systems Engineering and Electronics, 2006, 17(2): 355-361. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||