Journal of Systems Engineering and Electronics ›› 2020, Vol. 31 ›› Issue (6): 1274-1285.doi: 10.23919/JSEE.2020.000098
• CONTROL THEORY AND APPLICATION • Previous Articles Next Articles
Zhen SHI1,*(), Yaen XIE2(), Chengchen DENG1(), Kun ZHAO1(), Yushan HE1(), Yong HAO1()
Received:
2019-10-25
Online:
2020-12-18
Published:
2020-12-29
Contact:
Zhen SHI
E-mail:shizhen@hrbeu.edu.cn;xieenya@126.com;dengdada86@126.com;345005504@qq.com;heyvshan@163.com;haoyong@hrbeu.edu.cn
About author:
Supported by:
Zhen SHI, Yaen XIE, Chengchen DENG, Kun ZHAO, Yushan HE, Yong HAO. Disturbance observer based finite-time coordinated attitude tracking control for spacecraft on SO(3)[J]. Journal of Systems Engineering and Electronics, 2020, 31(6): 1274-1285.
1 |
WANG W J, LI C J, SUN Y C, et al Distributed coordinated attitude tracking control for spacecraft formation with communication delays. ISA Transactions, 2019, 85, 97- 106.
doi: 10.1016/j.isatra.2018.10.028 |
2 |
DU H B, LI S H Attitude synchronization for flexible spacecraft with communication delays. IEEE Trans. on Automatic Control, 2016, 61 (11): 3625- 3630.
doi: 10.1109/TAC.2016.2525933 |
3 |
RAN D C, CHEN X Q, MISRA A, et al Relative position coordinated control for spacecraft formation flying with communication delays. Acta Astronautica, 2017, 137, 302- 311.
doi: 10.1016/j.actaastro.2017.04.011 |
4 |
ZHANG C X, WANG J H, ZHANG D X Fault-tolerant adaptive finite-time attitude synchronization and tracking control for multi-spacecraft formation. Aerospace Science and Technology, 2018, 73, 197- 209.
doi: 10.1016/j.ast.2017.12.004 |
5 |
ZHU Z H, GUO Y Adaptive fault-tolerant attitude tracking control for spacecraft formation with unknown inertia. International Journal of Adaptive Control and Signal Processing, 2018, 32 (1): 13- 26.
doi: 10.1002/acs.2822 |
6 |
YI H, LIU M, LI M Event-triggered fault tolerant control for spacecraft formation attitude synchronization with limited data communication. European Journal of Control, 2019, 48, 97- 103.
doi: 10.1016/j.ejcon.2018.11.003 |
7 |
GUO Y, HUANG B, GUO J H, et al Velocity-free sliding mode control for spacecraft with input saturation. Acta Astronautica, 2019, 154, 1- 8.
doi: 10.1016/j.actaastro.2018.10.045 |
8 |
GUO Y, HUANG B, SONG S M, et al Robust saturated finite-time attitude control for spacecraft using integral sliding mode. Journal of Guidance, Control, and Dynamics, 2019, 42 (2): 440- 446.
doi: 10.2514/1.G003520 |
9 |
HU Q L, ZHANG J, FRISWELL M I Finite-time coordinated attitude control for spacecraft formation flying under input saturation. Journal of Dynamic Systems, Measurement, and Control, 2015, 137 (6): 061012.
doi: 10.1115/1.40292467 |
10 |
LEE D Nonlinear disturbance observer-based robust control for spacecraft formation flying. Aerospace Science and Technology, 2018, 76, 82- 90.
doi: 10.1016/j.ast.2018.01.027 |
11 |
ZHAO L, JIA Y M Neural network-based distributed adaptive attitude synchronization control of spacecraft formation under modified fast terminal sliding mode. Neurocomputing, 2016, 171, 230- 241.
doi: 10.1016/j.neucom.2015.06.063 |
12 |
SUN X H, WU X D, CHEN W D, et al Dual quaternion based dynamics modeling for electromagnetic collocated satellites of diffraction imaging on geostationary orbit. Acta Astronautica, 2020, 166, 52- 58.
doi: 10.1016/j.actaastro.2019.10.015 |
13 |
GUO Y, SONG S M, LI X H Backstepping sliding mode control for formation flying spacecraft. Aircraft Engineering and Aerospace Technology, 2018, 90 (1): 56- 64.
doi: 10.1108/AEAT-08-2014-0129 |
14 | ZHAO L, YU J P, SHI P. Command filtered backstepping-based attitude containment control for spacecraft formation. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2019: 1−10. DOI: 10.1109/TSMC.2019.2896614. |
15 |
MIAO Y, WANG F, LIU M Anti-disturbance backstepping attitude control for rigid-flexible coupling spacecraft. IEEE Access, 2018, 6, 50729- 50736.
doi: 10.1109/ACCESS.2018.2868074 |
16 |
WANG W, MENGALI G, QUARTA A A, et al Distributed adaptive synchronization for multiple spacecraft formation flying around Lagrange point orbits. Aerospace Science and Technology, 2018, 74, 93- 103.
doi: 10.1016/j.ast.2018.01.007 |
17 |
SHASTI B, ALASTY A, ASSADIAN N Robust distributed control of spacecraft formation flying with adaptive network topology. Acta Astronautica, 2017, 136, 281- 296.
doi: 10.1016/j.actaastro.2017.03.001 |
18 |
SUN R, WANG J H, ZHANG D X, et al Neural-network-based sliding-mode adaptive control for spacecraft formation using aerodynamic forces. Journal of Guidance, Control, and Dynamics, 2018, 41 (3): 757- 763.
doi: 10.2514/1.G003063 |
19 | HU Q L, SHAO X D, CHEN W H Robust fault-tolerant tracking control for spacecraft proximity operations using time-varying sliding mode. IEEE Trans. on Aerospace and Electronic Systems, 2017, 54 (1): 2- 17. |
20 |
SUN R, WANG J H, ZHANG D X, et al Neural network-based sliding mode control for atmospheric-actuated spacecraft formation using switching strategy. Advances in Space Research, 2018, 61 (3): 914- 926.
doi: 10.1016/j.asr.2017.11.011 |
21 |
ZHANG C X, WANG J H, ZHANG D X, et al Synchronization and tracking of multi-spacecraft formation attitude control using adaptive sliding mode. Asian Journal of Control, 2019, 21 (2): 832- 846.
doi: 10.1002/asjc.1775 |
22 |
ZHANG C X, WANG J H, SUN R, et al Multi-spacecraft attitude cooperative control using model-based event-triggered methodology. Advances in Space Research, 2018, 62 (9): 2620- 2630.
doi: 10.1016/j.asr.2018.07.019 |
23 |
XU C, WU B L, CAO X B, et al Distributed adaptive event-triggered control for attitude synchronization of multiple spacecraft. Nonlinear Dynamics, 2019, 95 (4): 2625- 2638.
doi: 10.1007/s11071-018-4706-z |
24 | HU Q L, SHI Y X, WANG C L. Event-based formation coordinated control for multiple spacecraft under communication constraints. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2019: 1−12. DOI:10.1109/TSMC.2019.2919027. |
25 |
DAI X, LI C K , RAD A B An approach to tune fuzzy controllers based on reinforcement learning for autonomous vehicle control. IEEE Trans. on Intelligent Transportation Systems, 2005, 6 (3): 285- 293.
doi: 10.1109/TITS.2005.853698 |
26 |
ZONG Q, SHAO S K Decentralized finite-time attitude synchronization for multiple rigid spacecraft via a novel disturbance observer. ISA Transactions, 2016, 65, 150- 163.
doi: 10.1016/j.isatra.2016.08.009 |
27 |
ZHONG R, XU S J Neural-network-based terminal sliding-mode control for thrust regulation of a tethered space-tug. Astrodynamics, 2018, 2 (2): 175- 185.
doi: 10.1007/s42064-017-0019-0 |
28 |
WU S N, CHU W M, MA X, et al Multi-objective integrated robust H∞ control for attitude tracking of a flexible spacecraft. Acta Astronautica, 2018, 151, 80- 87.
doi: 10.1016/j.actaastro.2018.05.062 |
29 | YE D, ZHANG J Q, SUN Z W. Extended state observer-based finite-time controller design for coupled spacecraft formation with actuator saturation. Advances in Mechanical Engineering, 2017, 9(4): 1687814017696413. |
30 |
MAYHEW C G, SANFELICE R G, TEEL A R Quaternion-based hybrid control for robust global attitude tracking. IEEE Trans. on Automatic Control, 2011, 56 (11): 2555- 2566.
doi: 10.1109/TAC.2011.2108490 |
31 | MAYHEW C G, SANFELICE R G, SHENG J S, et al Quaternion-based hybrid feedback for robust global attitude synchronization. IEEE Trans. on Automatic Control, 2011, 57 (8): 2122- 2127. |
32 |
ZHENG Z, XU Y, ZHANG L S, et al Decentralized attitude synchronization tracking control for multiple spacecraft under directed communication topology. Chinese Journal of Aeronautics, 2016, 29 (4): 995- 1006.
doi: 10.1016/j.cja.2016.06.013 |
33 |
CHEN T, SHAN J J Rotation-matrix-based attitude tracking for multiple flexible spacecraft with actuator faults. Journal of Guidance, Control, and Dynamics, 2019, 42 (1): 181- 188.
doi: 10.2514/1.G003812 |
34 |
CHEN T, SHAN J J Distributed adaptive fault-tolerant attitude tracking of multiple flexible spacecraft on SO(3). Nonlinear Dynamics, 2019, 95 (3): 1827- 1839.
doi: 10.1007/s11071-018-4661-8 |
35 |
HUANG B, LI A J, GUO Y, et al Rotation matrix based finite-time attitude synchronization control for spacecraft with external disturbances. ISA Transactions, 2019, 85, 141- 150.
doi: 10.1016/j.isatra.2018.10.027 |
36 |
ZHANG L, HUANG B, LIAO Y L, et al Finite-time trajectory tracking control for uncertain underactuated marine surface vessels. IEEE Access, 2019, 7, 102321- 102330.
doi: 10.1109/ACCESS.2019.2927810 |
37 |
HUANG B, LI A J, GUO Y, et al Fixed-time attitude tracking control for spacecraft without unwinding. Acta Astronautica, 2018, 151, 818- 827.
doi: 10.1016/j.actaastro.2018.04.041 |
38 | WU S N, RADICE G, GAO Y S, et al Quaternion-based finite time control for spacecraft attitude tracking. Acta Astronautica, 2011, 69 (112): 48- 58. |
39 |
CHEN M, YU J Disturbance observer-based adaptive sliding mode control for near-space vehicles. Nonlinear Dynamics, 2015, 82 (4): 1671- 1682.
doi: 10.1007/s11071-015-2268-x |
[1] | Tianqing CHANG, Quandong WANG, Lei ZHANG, Na HAO, Wenjun DAI. Battlefield dynamic scanning and staring imaging system based on fast steering mirror [J]. Journal of Systems Engineering and Electronics, 2019, 30(1): 37-56. |
[2] | Huan Zhou, Hui Zhao, Hanqiao Huang, and Xin Zhao. Integrated guidance and control design of the suicide UCAV for terminal attack [J]. Systems Engineering and Electronics, 2017, 28(3): 546-555. |
[3] | Mou Chen and Bin Jiang. Robust bounded control for uncertain flight dynamics using disturbance observer [J]. Journal of Systems Engineering and Electronics, 2014, 25(4): 640-. |
[4] | Li Zhou and Shumin Fei. Adaptive dynamic surface control for air-breathing hypersonic vehicle [J]. Journal of Systems Engineering and Electronics, 2013, 24(3): 463-. |
[5] | Binglong Cong, Xiangdong Liu, and Zhen Chen. Disturbance observer based time-varying sliding mode control for uncertain mechanical system [J]. Journal of Systems Engineering and Electronics, 2012, 23(1): 108-118. |
[6] |
Zhang Baolin, Tang Gongyou & Gao Dexin.
Optimal deterministic disturbances rejection for singularly perturbed linear systems
|
[7] | Tang Gongyou, Zhao Yandong & Zhang Baolin. Feedforward and feedback optimal control for linear time-varying systems with persistent disturbances [J]. Journal of Systems Engineering and Electronics, 2006, 17(2): 350-354. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||