Journal of Systems Engineering and Electronics ›› 2020, Vol. 31 ›› Issue (6): 1230-1244.doi: 10.23919/JSEE.2020.000103
• SYSTEMS ENGINEERING • Previous Articles Next Articles
Gabriel Mariano MARCELINO1,2(), Edemar Morsch FILHO1(), Sara Vega MARTINEZ1(), André Martins Pio DE MATTOS1(), Laio Oriel SEMAN1,3,*(), Leonardo Kessler SLONGO1(), Eduardo Augusto BEZERRA1()
Received:
2020-02-01
Online:
2020-12-18
Published:
2020-12-29
Contact:
Laio Oriel SEMAN
E-mail:gabriel.marcelino@sc.senai.br;edemar@labcet.ufsc.br;vegamartinezsara@gmail.com;andrempmattos@gmail.com;laioseman@gmail.com;lkslongo@gmail.com;eduardo.bezerra@ufsc.br
About author:
Supported by:
Gabriel Mariano MARCELINO, Edemar Morsch FILHO, Sara Vega MARTINEZ, André Martins Pio DE MATTOS, Laio Oriel SEMAN, Leonardo Kessler SLONGO, Eduardo Augusto BEZERRA. Qualification and validation test methodology of the open-source CubeSat FloripaSat-I[J]. Journal of Systems Engineering and Electronics, 2020, 31(6): 1230-1244.
Table 1
Timeline of FloripaSat-I: main tests from PM to FM"
Phase | Model | Campaign | Test | Status |
3 | EM-I | μGravity | Communication | On |
3 | EM-I | μGravity | Sensor measurement | On |
3 | EM-I | μGravity | Hardware functionality | On |
4 | EM-II | CubeDesign | Thermal cycling | On |
4 | EM-II | CubeDesign | Random vibration | Off (KS) |
4 | EM-II | CubeDesign | Fit check | Off (KS) |
4 | EM-II | UFSC | Sun emulator | On |
4 | EM-II | UFSC | Communication test | On |
5 | FM | UFSC | Mass | Off (KS) |
5 | FM | UFSC | Center of gravity (CG) | Off (RBF) |
6 | FM | LIT/INPE | Dimension | Off (RBF) |
6 | FM | LIT/INPE | Fit check | Off (KS) |
6 | FM | LIT/INPE | Vibration | Off (KS) |
6 | FM | LIT/INPE | Thermal cycling | On |
6 | FM | LIT/INPE | Bake out | On |
Table 5
Comparative of resonance survey test (signature)"
Axis | Signature 1/Hz // g | Signature 2/Hz // g | Δf/Hz // % |
X | 195.2 // 0.8 | 203.5 // 0.9 | 8.3 // +4.2 |
? | 248.1 // 0.5 | ? | |
370.8 // 1.8 | 345.0 // 2.2 | 25.8 // ?6.9 | |
? | 468.5 // 1.5 | ? | |
Y | 240.8 // 0.7 | 233.6 // 0.6 | 7.2 // ?3.0 |
274.7 // 0.6 | 288.2 // 0.7 | 13.5 // +4.9 | |
368.6 // 0.5 | 351.3 // 0.7 | 17.3 // ?4.7 | |
599.1 // 1.0 | 610.0 // 0.9 | 10.9 // +1.8 | |
721.5 // 0.5 | ? | ? | |
780.0 // 0.6 | 818.3 // 1.7 | 38.3 // +4.9 | |
? | 884.7 // 1.6 | ? | |
1275.0 // 1.5 | 1245.0 // 1.2 | 30.0 // ?2.3 | |
Z | 271.4 // 0.6 | 255.6 // 0.5 | 15.8 // ?5.8 |
? | 325.0 // 0.5 | ? | |
410.6 // 1.0 | 433.4 // 2.0 | 22.8 // +5.5 | |
441.1 // ? | ? | ? | |
477.0 // ? | ? | ? | |
521.9 // ? | ? | ? | |
? | 708.6 // 0.8 | ? | |
? | 985.6 // 2.9 | ? | |
1028.0 // 3.8 | 1053.0 // 2.5 | 25.0 // +2.4 | |
1573.0 // 6.8 | 1536.0 // 4.9 | 37.0 // ?2.3 | |
1722.0 // 6.5 | 1641.0 // 5.5 | 81.0 // ?4.7 |
Table 6
Parameters for the bake and thermal cycling"
Thermal cycle | Bake out | |||
Parameter | Value | Parameter | Value | |
Number of cycles | 2 | Part 1 | ||
Min. temp. (Tmin)/°C | ?15 | Pressure/mbar | <1×10?4 | |
Max. temp. (Tmax)/°C | +50 | Temperature/°C | 23 | |
Duration in Tmin/min | 30 | Duration/h | 12 | |
Duration in Tmax/min | 60 | Part 2 | ||
Heating rate/(°C/min) | 5.5 | Pressure/mbar | <1×10?4 | |
Cooling rate/(°C/min) | 3.5 | Temperature/°C | 60 | |
Stabilization criteria/(°C/10 min) | 1 | Duration/h | 6 |
1 |
DUZELLIER S Radiation effects on electronic devices in space. Aerospace Science and Technology, 2005, 9 (1): 93- 99.
doi: 10.1016/j.ast.2004.08.006 |
2 | CARVALHO M J M. Constellation of nanosatellites for environmental data collection. São José dos Campos, Brazil. National Institute of Space Research, 2012. |
3 | TENEV D. Design and implementation of on-board processor and software of student nanosatellite OUFTI-1. Liege, Belgium: University of Liege, 2009. |
4 | SOLVHOJ J, BREITING M, THOMSEN M. Onboard computer for pico satellite. Kongens Lyngby, Denmark: Technical University of Denmark, 2002. |
5 | European Cooperation for Space Standardization. ECSS-E-ST-10C—system engineering general requirements. https://ecss.nl/standard/ecss-e-st-10c-rev-1-system-engineering-general-requirements-15-february-2017/. |
6 |
SLONGO L K, REIS J G, GAIKI D, et al Pre-flight qualification test procedure for nanosatellites using sounding rockets. Acta Astronautica, 2019, 159, 564- 577.
doi: 10.1016/j.actaastro.2019.01.035 |
7 | SANTOS W A, ASENCIO J C R, BÜRGER E E, et al. CubeDesign: a comprehensive competition for space engineering capacity building in Latin America. Proc. of the 3rd Latin American Cubesat Workshop, 2018: 674−684. |
8 | SLONGO L K. Nanosatellite electrical power systems hardware architectures: an analysis on energy harvesting maximization through scheduling algorithm. Florianopolis, Brazil: Federal University of Santa Catarina, 2017. |
9 | National Institute of Space Research. 1. CubeDesign – smallsats, big ideas. http://www.inpe.br/cubedesign/2018. |
10 | Calpoly Slo California Polytechnic State University. CubeSat design specification (CDS) REV 13. http://www.cubesat.org/. |
11 | Space Exploration Technologies Corporation. Falcon 9 launch vehicle payload user’s guide. https://www.spaceflightnow.com/falcon9/001/f9guide.pdf. |
12 | BURGER E E. Method proposal for peak and nanosatellites AIT. São José dos Campos, Brazil: National Institute of Space Research, 2014. |
13 | Internation Organization for Standardization. ISO 14644-1: 2015 cleanrooms and associated controlled environments—Part 1: classification of air cleanliness by particle concentration. https://www.iso.org/standard/53394.html. |
14 | MAI T. Technology readiness level. https://www.nasa.gov/directorates/heo/scan/engineering/technology/txt_accordion1.html. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||