Journal of Systems Engineering and Electronics ›› 2020, Vol. 31 ›› Issue (6): 1160-1166.doi: 10.23919/JSEE.2020.000088
• DEFENCE ELECTRONICS TECHNOLOGY • Previous Articles Next Articles
Hui BI1,*(), Yuan CHENG1(
), Daiyin ZHU1(
), Wen HONG2(
)
Received:
2020-05-06
Online:
2020-12-18
Published:
2020-12-29
Contact:
Hui BI
E-mail:bihui@nuaa.edu.cn;nuaachengyuan@nuaa.edu.cn;zhudy@nuaa.edu.cn;whong@mail.ie.ac.cn
About author:
Supported by:
Hui BI, Yuan CHENG, Daiyin ZHU, Wen HONG. Wavelet-based
1 |
REIGBER A, MOREIRA A First demonstration of airborne SAR tomography using multibaseline L-band data. IEEE Trans. on Geoscience and Remote Sensing, 2000, 38 (5): 2142- 2152.
doi: 10.1109/36.868873 |
2 |
FORNARO G, SERAFINO F, LOMBARDINI F Three-dimensional multipass SAR focusing: experiments with long-term space-borne data. IEEE Trans. on Geoscience and Remote Sensing, 2005, 43 (4): 702- 714.
doi: 10.1109/TGRS.2005.843567 |
3 |
ZHU X X, BAMLER R Tomographic SAR inversion by L1-norm regularization— the compressive sensing approach . IEEE Trans. on Geoscience and Remote Sensing, 2010, 48 (10): 3839- 3846.
doi: 10.1109/TGRS.2010.2048117 |
4 |
DONOHO D Compressed sensing. IEEE Trans. on Information Theory, 2006, 52 (4): 1289- 1306.
doi: 10.1109/TIT.2006.871582 |
5 |
CANDES E, TAO T Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. on Information Theory, 2006, 52 (12): 5406- 5425.
doi: 10.1109/TIT.2006.885507 |
6 |
NYQUIST H Certain topics in telegraph transmission theory. Transactions of the American Institute of Electrical Engineers, 1928, 47 (2): 617- 644.
doi: 10.1109/T-AIEE.1928.5055024 |
7 | SHANNON C E Communication in the presence of noise. Proceedings of the Institute of Radio Engineers, 1949, 37 (1): 10- 21. |
8 |
CANDES E, TAO T Decoding by linear programming. IEEE Trans. on Information Theory, 2005, 51 (12): 4203- 4215.
doi: 10.1109/TIT.2005.858979 |
9 |
CANDES E, ROMBERG J, TAO T Stable signal recovery from incomplete and inaccurate measurement. Communications on Pure and Applied Mathematics, 2006, 59 (8): 1207- 1223.
doi: 10.1002/cpa.20124 |
10 |
XU Z, CHANG X, XU F, et al L1/2 regularization: a thresholding representation theory and a fast solver . IEEE Trans. on Neural Networks and Learning Systems, 2012, 23 (7): 1013- 1027.
doi: 10.1109/TNNLS.2012.2197412 |
11 | ZHU X X, BAMLER R. Very high resolution SAR tomography via compressive sensing. Proc. of the Fringe Workshop, 2009: 1−7. |
12 | BUDILLON A, EVANGELISTA A, SCHIRINZI G. SAR tomography from sparse samples. Proc. of the International Geoscience and Remote Sensing Symposium, 2009: 865−868. |
13 | MANCON S, TEBALDINI S, GUARNIERI A M. Lp norm SAR tomography by iteratively reweighted least square: first results. Proc. of the IEEE Geoscience and Remote Sensing Symposium, 2014: 1309−1312. |
14 | WANG X, XU F, JIN Y Q. Numerical simulation of tomography-SAR imaging and the object reconstruction using the compressive sensing approach with $L_ {{1}/{2}}$-norm regularization. Proc. of the International Scientific Radio Union General Assembly and Scientific Symposium, 2014: 1−4. |
15 |
BUDILLON A, FERRAIOLI G, SCHIRINZI G Localization performance of multiple scatterers in compressive sampling SAR tomography: results on COSMO-SkyMed data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7 (7): 2902- 2910.
doi: 10.1109/JSTARS.2014.2344916 |
16 |
AGUILERA E, NANNINI M, REIGBER A Wavelet-based compressed sensing for SAR tomography of forested areas. IEEE Trans. on Geoscience and Remote Sensing, 2013, 51 (12): 5283- 5295.
doi: 10.1109/TGRS.2012.2231081 |
17 |
NANNINI M, SCHEIBER R, HORN R, et al First 3-D reconstructions of targets hidden beneath foliage by means of polarimetric SAR tomography. IEEE Geoscience and Remote Sensing Letters, 2012, 9 (1): 60- 64.
doi: 10.1109/LGRS.2011.2160329 |
18 | STRANG G, NGUYEN T. Wavelet and filter banks. Wellesley, MA: Wellesley College, 1997. |
[1] | Wei SONG, Wenzheng WANG. Compressive sensing based multiuser detector for massive MBM MIMO uplink [J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 19-27. |
[2] | Shixin WANG, Yuan ZHAO, Ibrahim LAILA, Ying XIONG, Jun WANG, Bin TANG. Joint 2D DOA and Doppler frequency estimation for L-shaped array using compressive sensing [J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 28-36. |
[3] | Chaozhu ZHANG, Hongyi XU, Haiqing JIANG. Adaptive block greedy algorithms for receiving multi-narrowband signal in compressive sensing radar reconnaissance receiver [J]. Journal of Systems Engineering and Electronics, 2018, 29(6): 1158-1169. |
[4] | Hongyi Xu, Haiqing Jiang, and Chaozhu Zhang. Multi-narrowband signals receiving method based on analog-to-information convertor and block sparsity [J]. Systems Engineering and Electronics, 2017, 28(4): 643-. |
[5] | Youhua Wang and Jianqiu Zhang. Robust signal recovery algorithm for structured perturbation compressive sensing [J]. Journal of Systems Engineering and Electronics, 2016, 27(2): 319-325. |
[6] | Yi Shen, Yan Jing, and Naizhang Feng. Construction of deterministic sensing matrix and its application to DOA estimation [J]. Systems Engineering and Electronics, 2016, 27(1): 10-. |
[7] | Jia Li, Qiang Wang, and Yi Shen. Near optimal condition of OMP algorithm in recovering sparse signal from noisy measurement [J]. Journal of Systems Engineering and Electronics, 2014, 25(4): 547-. |
[8] | Shuyi Jia, Guohong Wang, and Shuncheng Tan. Radial acceleration estimation of multiple high maneuvering targets [J]. Journal of Systems Engineering and Electronics, 2014, 25(2): 183-193. |
[9] | Wei Gan, Luping Xu, and Hua Zhang. Maximal-minimal correlation atoms algorithm for sparse recovery [J]. Journal of Systems Engineering and Electronics, 2013, 24(4): 579-585. |
[10] | Chunhui Zhao and Wei Liu. Degradation algorithm of compressive sensing [J]. Journal of Systems Engineering and Electronics, 2011, 22(5): 832-839. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||