Journal of Systems Engineering and Electronics ›› 2020, Vol. 31 ›› Issue (6): 1140-1151.doi: 10.23919/JSEE.2020.000086
• ELECTRONICS TECHNOLOGY • Previous Articles Next Articles
Ronghua ZHOU, Hemin SUN, Hao LI*(), Weilin LUO
Received:
2020-03-19
Online:
2020-12-18
Published:
2020-12-29
Contact:
Hao LI
E-mail:Afeu_li@163.com
About author:
Supported by:
Ronghua ZHOU, Hemin SUN, Hao LI, Weilin LUO. TDOA and track optimization of UAV swarm based on D-optimality[J]. Journal of Systems Engineering and Electronics, 2020, 31(6): 1140-1151.
Table 1
Coordinates of the station with a baseline length of 10 km km "
Cloth stand shape | Master station coordinate | Auxiliary station 1 coordinate | Auxiliary station 2 coordinate | Auxiliary station 3 coordinate |
Diamond | (100,100,100.1) | (100,110,100) | (91.34,105,100) | (108.66,105,100) |
T-type | (100,100,100.1) | (90,100,100) | (110,100,100) | (100,90,100) |
Y-type | (100,100,100.1) | (91.34,105,100) | (108.66,105,100) | (100,90,100) |
Table 2
Coordinates of the station with a baseline length of 20 km km "
Cloth stand shape | Master station coordinate | Auxiliary station 1 coordinate | Auxiliary station 2 coordinate | Auxiliary station 3 coordinate |
Diamond | (100,100,100.1) | (100,120,100) | (82.68,110,100) | (117.32,110,100) |
T-type | (100,100,100.1) | (80,100,100) | (120,100,100) | (100,80,100) |
Y-type | (100,100,100.1) | (82.68,110,100) | (117.32,110,100) | (100,80,100) |
Table 3
Coordinates of the station with a baseline length of 30 km km "
Cloth stand shape | Master station coordinate | Auxiliary station 1 coordinate | Auxiliary station 2 coordinate | Auxiliary station 3 coordinate |
Diamond | (100,100,100.1) | (100,130,100) | (74.02,115,100) | (125.98,115,100) |
T-type | (100,100,100.1) | (70,100,100) | (130,100,100) | (100,70,100) |
Y-type | (100,100,100.1) | (74.02,115,100) | (125.98,115,100) | (100,70,100) |
1 | GAO Y, LI D S, CHENG Z X UAV distributed swarm situation awareness model. Journal of Electronics & Information Technology, 2018, 40 (6): 1271- 1278. |
2 | LIANG X L, ZHANG J Q, LU N. UAV swarm. Xi’an: Northwestern Polytechnical University Press, 2018. (in Chinese) |
3 | PHAM H, LA H, FEIL-SEIFER D, et al. Autonomous UAV navigation using reinforcement learning. Ithaca: Cornell University, 2018. |
4 |
NGUYEN N H, DOGANCY K Closed-form algebraic solutions for angle-of-arrival source localization with Bayesian priors. IEEE Trans. on Wireless Communications, 2019, 18 (8): 3827- 3842.
doi: 10.1109/TWC.2019.2918516 |
5 |
WANG Y, HO D Unified near-field and far-field localization for AOA and hybrid AOA-TDOA positionings. IEEE Trans. on Wireless Communications, 2018, 17 (2): 1242- 1254.
doi: 10.1109/TWC.2017.2777457 |
6 |
TOMIC S, BEKO M, DINIS R, et al A closed-form solution for RSS/AoA target localization by spherical coordinates conversion. IEEE Wireless Communications Letters, 2016, 5 (6): 680- 683.
doi: 10.1109/LWC.2016.2615614 |
7 |
RUI L, HO K C Elliptic localization: performance study and optimum receiver placement. IEEE Trans. on Signal Processing, 2014, 62 (18): 4673- 4688.
doi: 10.1109/TSP.2014.2338835 |
8 |
TOMIC S, BEKO M, DINIS R, et al A robust bisection-based estimator for TOA-based target localization in NLOS environments. IEEE Communications Letters, 2017, 21 (11): 2488- 2491.
doi: 10.1109/LCOMM.2017.2737985 |
9 | D’AMICO A A, TAPONECCO L, MENGAALI U Ultra-wideband TOA estimation in the presence of clock frequency offset. IEEE Trans. on Wireless Communications, 2013, 12 (4): 1606- 1616. |
10 |
GHOLAMI M R, GEZICI S, STROM E G, et al TDOA based positioning in the presence of unknown clock skew. IEEE Trans. on Communications, 2013, 61 (6): 2522- 2534.
doi: 10.1109/TCOMM.2013.032013.120381 |
11 |
WANG G, HO K C Convex relaxation methods for unified near-field and far-field TDOA-based localization. IEEE Trans. on Wireless Communications, 2019, 18 (4): 2346- 2360.
doi: 10.1109/TWC.2019.2903037 |
12 |
JIN B N, XU X S, ZHANG T Robust time-difference-of-arrival (TDOA) localization using weighted least squares with cone tangent plane constraint. Sensors, 2018, 18 (3): 778.
doi: 10.3390/s18030778 |
13 |
TOMIC S, BEKO M, DINIS R, et al Distributed RSS-based localization in wireless sensor networks based on second-order cone programming. Sensors, 2014, 14 (10): 18410- 18432.
doi: 10.3390/s141018410 |
14 |
KHAN M A, SAEED N, AHMAD A W, et al Location awareness in 5G networks using RSS measurements for public safety applications. IEEE Access, 2017, 5, 21753- 21762.
doi: 10.1109/ACCESS.2017.2750238 |
15 |
TOMIC S, BEKO M, DINIS R, et al RSS-based localization in wireless sensor networks using convex relaxation non-cooperative and cooperative schemes. IEEE Trans. on Vehicular Technology, 2015, 64 (5): 2037- 2050.
doi: 10.1109/TVT.2014.2334397 |
16 |
ZHU G H, FENG D Z, XIE H, et al An approximately efficient bi-iterative method for source position and velocity estimation using TDOA and FDOA measurements. Signal Processing, 2016, 125, 110- 121.
doi: 10.1016/j.sigpro.2015.12.013 |
17 | FOY W H Position-location solutions by Taylor-series estimation. IEEE Trans. on Aerospace Electronic Systems, 2007, 12 (2): 187- 194. |
18 |
WANG J, GUO J Research on the base station calibration of multi-station and time-sharing measurement based on hybrid genetic algorithm. Measurement, 2016, 94, 139- 148.
doi: 10.1016/j.measurement.2016.07.076 |
19 |
CHAN Y T, HO K C A simple and efficient estimator for hyperbolic location. IEEE Trans. on Signal Processing, 1994, 42 (8): 1905- 1915.
doi: 10.1109/78.301830 |
20 | SCHAU H C, ROBINSON A Z Passive source localization employing intersecting spherical surfaces from time-of-arrival differences. IEEE Trans. on Acoustics, Speech, and Signal Processing, 2003, 35 (8): 1223- 1225. |
21 |
MALANOWSKI M, KULPA K Two methods for target localization in multistatic passive radar. IEEE Trans. on Aerospace Electronic Systems, 2012, 48 (1): 572- 580.
doi: 10.1109/TAES.2012.6129656 |
22 | WANG P W. Research and application on the key technologies for TDOA passive source localization. Xi’an: Xidian University, 2018. (in Chinese) |
23 |
WANG Y, HO K C TDOA positioning irrespective of source range. IEEE Trans. on Signal Processing, 2017, 65 (6): 1447- 1460.
doi: 10.1109/TSP.2016.2630030 |
24 |
WANG G, CHEN H An importance sampling method for TDOA-based source localization. IEEE Trans. on Wireless Communications, 2011, 10 (5): 1560- 1568.
doi: 10.1109/TWC.2011.030311.101011 |
25 | FREW E W, DIXON C, ARGROWB, et al. Radio source localization by a cooperating UAV team. Proc. of the AIAA Infotech @ Aerospace, 2005: AIAA 2005 – 6903. |
26 | SEMPER S R, CRASSIDIS J L. Decentralized geolocation and optimal path planning using limited UAVs. Proc. of the IEEE 12th International Conference on Information Fusion, 2009: 355 – 362. |
27 | MORENO-SALINAS D, PASCOAL A, ALMANSA J A. Sensor networks for optimal target localization with bearings-only measurements in constrained three-dimensional scenarios. Sensors, 2013: 13(8): 10386–10417. |
28 |
SONIA M, BULLO F Optimal sensor placement and motion coordination for target tracking. Automatica, 2006, 42 (4): 661- 668.
doi: 10.1016/j.automatica.2005.12.018 |
29 | KAUNE R, CHARLISH A. Online optimization of sensor trajectories for localization using TDOA measurements. Proc. of the IEEE 16th International Conference on Information Fusion, 2013: 484−491. |
30 |
PEREZ-RAMIREZ J, BORAH D K, VOELZ D G Optimal 3-D landmark placement for vehicle localization using heterogeneous sensors. IEEE Trans. on Vehicular Technology, 2013, 62 (7): 2987- 2999.
doi: 10.1109/TVT.2013.2255072 |
31 |
LANZISERA S, ZATS D, PSITER K S J Radio frequency time-of-flight distance measurement for low-cost wireless sensor localization. IEEE Sensors Journal, 2011, 11 (3): 837- 845.
doi: 10.1109/JSEN.2010.2072496 |
32 | GHABCHELOO R, AGUIAR A P, PASCOL A, et al Coordinated path-following in the presence of communication losses and time delays. SIAM Journal on Control & Optimization, 2009, 48 (1): 234- 265. |
33 | KAUNE R, HORST J, KOCH W. Accuracy analysis for TDOA localization in sensor networks. Proc. of the IEEE 14th International Conference on Information Fusion, 2011: 1647–1654. |
34 | SHARP I, YU K. GDOP analysis for positioning design. Singapore: Springer, 2019. |
35 |
LAVETIA G, RAO G S, CHAITANYA D E, et al TDOA measurement based GDOP analysis for radio source localization. Procedia Computer Science, 2016, 85, 740- 747.
doi: 10.1016/j.procs.2016.05.261 |
36 | SUN H. Research and implementation of multi station passive TDOA location algorithm. Harbin: Harbin Engineering University, 2017. (in Chinese) |
37 | UCINSKI D. Optimal measurement methods for distributed parameter system identification. Boca Raton: CRC Press, 2004. |
38 | DOGANCAY D, HMAM H. On optimal sensor placement for time difference of arrival localization utilization uncertainty minimization. Proc. of the 17th European Signal Processing Conference, 2009: 1136−1140. |
39 |
MERENO-SALINAS D, PASCOAL A, ARANDA J Optimal sensor placement for acoustic underwater target positioning with range-only measurements. IEEE Journal of Oceanic Engineering, 2016, 41 (3): 620- 643.
doi: 10.1109/JOE.2015.2494918 |
40 | MERENO-SALINAS D, PASCOAL A, ARANDA J A. Optimal sensor placement for underwater positioning with uncertainty in the target location. Proc. of the IEEE International Conference on Robotics and Automation, 2011: 2308−2314. |
[1] | Ting SU, Yong GAO. TDOA estimation of dual-satellites interference localization based on blind separation [J]. Journal of Systems Engineering and Electronics, 2019, 30(4): 696-702. |
[2] | Bo Wang, Xiaolong Liang, Liang Wei, and Pingni Liu. Aviation multi-station collaborative detecting based on time-frequency correlation of data-link [J]. Systems Engineering and Electronics, 2017, 28(5): 827-840. |
[3] | Wei Xia, Wei Liu, and Lingfeng Zhu. Distributed adaptive direct position determination based on diffusion framework [J]. Systems Engineering and Electronics, 2016, 27(1): 28-. |
[4] | Hui Di, Yu Liu, and Jian Yang. Novel method for radial velocity difference estimation of moving targets with wideband signals [J]. Journal of Systems Engineering and Electronics, 2014, 25(2): 175-182. |
[5] | Benjian Hao and Zan Li. BFGS quasi-Newton location algorithm using TDOAs and GROAs [J]. Journal of Systems Engineering and Electronics, 2013, 24(3): 341-. |
[6] | Congfeng Liu, Jie Yang, and Fengshuai Wang. Joint TDOA and AOA location algorithm [J]. Journal of Systems Engineering and Electronics, 2013, 24(2): 183-188. |
[7] | Huagang Yu, Gaoming Huang, Jun Gao, and Bo Yan. Practical constrained least-square algorithm for moving source location using TDOA and FDOA measurements [J]. Journal of Systems Engineering and Electronics, 2012, 23(4): 488-494. |
[8] | Tingting Huang and Tongmin Jiang. Optimum design of equivalent accelerated life testing plans based on proportional hazards-proportional odds model [J]. Journal of Systems Engineering and Electronics, 2011, 22(5): 871-878. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||