Journal of Systems Engineering and Electronics ›› 2020, Vol. 31 ›› Issue (6): 1128-1139.doi: 10.23919/JSEE.2020.000085
• ELECTRONICS TECHNOLOGY • Previous Articles Next Articles
Ying LI(), Guanghong GONG*(), Lin SUN()
Received:
2019-07-18
Online:
2020-12-18
Published:
2020-12-29
Contact:
Guanghong GONG
E-mail:1193126485@qq.com;ggh@ggh.buaa.edu.cn;2019@163.com
About author:
Supported by:
Ying LI, Guanghong GONG, Lin SUN. A fast, accurate and dense feature matching algorithm for aerial images[J]. Journal of Systems Engineering and Electronics, 2020, 31(6): 1128-1139.
Table 1
3D reconstruction results with different resolution images"
Image resolution/ (pixels × pixels) | Key points’ number of a single picture (median) | Number of all tie points | Tie points’ number of a single picture (median) |
1 840 × 1 228 | 6 693 | 35 388 | 1 229 |
3 680 × 2 456 | 24 254 | 32 609 | 1 007 |
7 360 × 4 912 | 43 455 | 23 924 | 828 |
14 720 × 9 824 | 43 549 | 13 859 | 400 |
Table 2
Aerial image down-sampling matching experiment"
Image resolution/(pixels × pixels) | Image result | Number | Time/s |
3 680 × 2 456 | | (i) 71 751 (ii) 36 | (iii) 335.27 (iv) 4.65 |
1 840 × 1 228 | | (i) 15 166 (ii) 36 | (iii) 17.33 (iv) 1.21 |
920 × 614 | | (i) 3 848 (ii) 207 | (iii) 2.93 (iv) 0.45 |
460 × 307 | | (i) 944 (ii) 164 | (iii) 1.68 (iv) 0.28 |
230 × 153 | | (i) 232 (ii) 48 | (iii) 1.21 (iv) 0.24 |
Table 3
Region-based feature pair screening experiment"
Algorithm | Image result | Number | Time/s |
Original result | | (i) 164 (ii) 164 (iii) 161 (iv) 3 | – |
PSNR | | (i) 164 (ii) 151 (iii) 150 (iv) 1 | (v) 0.691 |
SSIM | | (i) 164 (ii) 87 (iii) 85 (iv) 2 | (v) 0.676 |
Mean hash | | (i) 164 (ii) 107 (iii) 105 (iv) 2 | (v) 0.205 |
Local optimization | | (i) 164 (ii) 118 (iii) 118 (iv) 0 | (v) 1.355 |
Table 6
Comparison between SURF+RANSAC and our algorithm"
Method | Image result | SfM result | Time/s | Number |
SURF + RANSAC | | | 697 | (i) 1 501 (ii) 1 500 |
The proposed algorithm | | | 344 | (i) 1 862 (ii) 1 862 |
SURF + RANSAC | | | 262 | (i) 103 (ii) 103 |
The proposed algorithm | | | 113 | (i) 447 (ii) 446 |
SURF + RANSAC | | | 167 | (i) 113 (ii) 113 |
The proposed algorithm | | | 129 | (i) 486 (ii) 486 |
1 | LIU T Comparison of software Inpho, PhotoScan and Pix4D for UAV orthophoto processing. Technology and Industry Across the Straits, 2017, 221 (11): 82- 84. |
2 | BENTLEY. Context capture: create 3D models from simple photographs. https://www.bentley.com/en/products/brands/contextcapture. |
3 |
LOWE D G Distinctive image feature from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60 (2): 91- 110.
doi: 10.1023/B:VISI.0000029664.99615.94 |
4 | BAY H, TUYTELAARS T, GOOL L J V. SURF: speeded up robust features. Proc. of the European Conference on Computer Vision, 2006: 404–417. |
5 | ROSTEN E, DRUMMOND T. Machine learning for high-speed corner detection. Proc. of the European Conference on Computer Vision, 2006: 430–443. |
6 | RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF. Proc. of the IEEE International Conference on Computer Vision, 2011: 2564–2571. |
7 | LEUTENEGGER S, CHLI M, SIEGWART R Y. Brisk: binary robust invariant scalable keypoints. Proc. of the IEEE International Conference on Computer Vision, 2011, 58(11): 2548–2555. |
8 | ALAHI A, ORTIZ R, VANDERGHEYNST P. FREAK: fast retina keypoint. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2012: 510–517. |
9 | PABLO F A, ADRIEN B, ANDREW J D. KAZE features. Proc. of the European Conference on Computer Vision, 2012: 214–227. |
10 | PABLO F A, JESUS N, ADRIEN B. Fast explicit diffusion for accelerated features in nonlinear scale spaces. Proc. of the British Machine Vision Conference, 2013: 1–12. |
11 | TAREEN S A K, SALEEM Z. A comparative analysis of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK. Proc. of the IEEE International Conference on Computing, Mathematics and Engineering Technologies, 2018: 1–10. |
12 |
LAM S K, LIM T C, WU M, et al Data-path unrolling with logic folding for area-time-efficient FPGA-based FAST corner detector. Journal of Real Time Image Processing, 2019, 16 (6): 2147- 2158.
doi: 10.1007/s11554-017-0725-0 |
13 | CHEN S J, ZHENG S Z, XU Z G, et al An improved image matching method based on SURF algorithm. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, 42 (3): 179- 184. |
14 | ZHU J T, GONG C F, ZHAO M X, et al Image mosaic algorithm based on PCA-ORB feature matching. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020, 42 (3): 83- 89. |
15 | GUO S L, HAN L N, HAO X T GW28-e0419 image detection scale-invariant feature transform algorithm based on feature matching improves image matching accuracy. Journal of the American College of Cardiology, 2017, 70 (16): C10. |
16 |
LI J Y, HU Q W, AI M Y RIFT: multi-modal image matching based on radiation-variation insensitive feature transform. IEEE Trans. on Image Processing, 2020, 29, 3296- 3310.
doi: 10.1109/TIP.2019.2959244 |
17 | YU X Y, LEI H, GAO W, et al. Image matching algorithm with color information based on SIFT. Proc. of the 10th International Conference on Digital Image Processing, 2018. DOI:10.1117/12.2502820. |
18 |
LI Q L, WANG G Y, LIU J G, et al Robust scale-invariant feature matching for remote sensing image registration. IEEE Geoscience and Remote Sensing Letters, 2009, 6 (2): 287- 291.
doi: 10.1109/LGRS.2008.2011751 |
19 |
MA C, HU X, XIAO J, et al Improved ORB algorithm using three-patch method and local gray difference. Sensors, 2020, 20 (4): 975.
doi: 10.3390/s200409751 |
20 |
WU Y Research on feature point extraction and matching machine learning method based on light field imaging. Neural Computing and Applications, 2019, 31 (12): 8157- 8169.
doi: 10.1007/s00521-018-3962-7 |
21 | ZHANG Y, LI C, CAO C Q, et al. An improved ORB feature point matching algorithm. Proc. of the 2nd International Conference on Computer Science and Artificial Intelligence, 2018: 207–211. |
22 |
LI J Y, HU Q W, AI M Y 4FP-structure: a robust local region feature descriptor. Photogrammetric Engineering and Remote Sensing, 2017, 83 (12): 813- 826.
doi: 10.14358/PERS.83.12.813 |
23 |
ZHU S Z, LIU L Z, CHEN S Image feature detection algorithm based on the spread of Hessian source. Multimedia Systems, 2017, 23 (1): 105- 117.
doi: 10.1007/s00530-015-0453-x |
24 |
HARTMANN W, HAVLENA M, SCHINDLER K Recent developments in large-scale tie-point matching. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115, 47- 62.
doi: 10.1016/j.isprsjprs.2015.09.005 |
25 |
XI W F, SHI Z T, LI D S Comparisons of feature extraction algorithm based on unmanned aerial vehicle image. Open Physics, 2017, 15 (1): 472- 478.
doi: 10.1515/phys-2017-0053 |
26 |
AMIN S, NAIILA M Uniform competency-based local feature extraction for remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 135, 142- 157.
doi: 10.1016/j.isprsjprs.2017.11.019 |
27 |
LI M M, XIE W F Remote sensing image matching algorithm for coastal zone based on local features. Journal of Coastal Research, 2019, 93 (sp1): 723- 728.
doi: 10.2112/SI93-100.1 |
28 |
YUAN X X, CHEN S Y, YUAN W, et al Poor textural image tie point matching via graph theory. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 129, 21- 31.
doi: 10.1016/j.isprsjprs.2017.04.015 |
29 |
WU Y D, MING Y, TAN H An efficient hyper-graph based tie point matching method for aerial imagery. Remote Sensing Letters, 2020, 11 (4): 313- 322.
doi: 10.1080/2150704X.2020.1714773 |
30 |
CHEN S T, FENG R, ZHANG Y Y, et al Aerial image matching method based on HSI hash learning. Pattern Recognition Letters, 2019, 117, 131- 139.
doi: 10.1016/j.patrec.2018.06.008 |
31 |
SONG W H, JUNG H G, GWAK I Y, et al Oblique aerial image matching based on iterative simulation and homography evaluation. Pattern Recognition, 2019, 87, 317- 331.
doi: 10.1016/j.patcog.2018.10.027 |
32 |
MARTIN A F, ROBERT C B Random sample consensus: a paradigm for model fitting with application to image analysis and automated cartography. Communications of Association for Computing Machinery, 1981, 24 (6): 381- 395.
doi: 10.1145/358669.358692 |
33 |
GUI Y, SU A, DU J Point-pattern matching method using SURF and shape context. Optik International Journal for Light and Electron Optics, 2013, 124 (14): 1869- 1873.
doi: 10.1016/j.ijleo.2012.05.037 |
34 | XI W F, LI D S, LI J S, et al. Research on an improved algorithm for eliminating gross error in UAV image mosaic. Proc. of the 26th International Conference on Geoinformatics, 2018: 1–5. |
35 |
LI J Y, HU Q W, AI M Y LAM: locality affine-invariant feature matching. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 154, 28- 40.
doi: 10.1016/j.isprsjprs.2019.05.006 |
36 | GAO H W, JIANG Y Q, LIU J G, et al. Zooming image based false matches elimination algorithms for robot navigation. Advances in Mechanical Engineering, 2017, 9(12): 168781401773815. |
37 |
GESTO-DIAZ M, TOMBARI F, GONZALEZAGUILERA D, et al Feature matching evaluation for multimodal correspondence. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 129, 179- 188.
doi: 10.1016/j.isprsjprs.2017.05.007 |
[1] | Minggang Gan, Yulong Cheng, Yanan Wang, and Jie Chen. Hierarchical particle filter tracking algorithm based on multi-feature fusion [J]. Systems Engineering and Electronics, 2016, 27(1): 51-. |
[2] | An Liu, Donghua Zhou, Lixin Chen, and Maoyin Chen. Saliency detection and edge feature matching approach for crater extraction [J]. Systems Engineering and Electronics, 2015, 26(6): 1291-1300. |
[3] | Peng Wang, Qibin Zhang, and Zonghai Chen. Feature extension and matching for mobile robot global localization [J]. Journal of Systems Engineering and Electronics, 2015, 26(4): 840-. |
[4] | Ma Yu, Gu Xiaodong & Wang Yuanyuan. Feature fusion method for edge detection of color images [J]. Journal of Systems Engineering and Electronics, 2009, 20(2): 394-399. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||