Journal of Systems Engineering and Electronics ›› 2020, Vol. 31 ›› Issue (6): 1097-1104.doi: 10.23919/JSEE.2020.000082
• ELECTRONICS TECHNOLOGY • Previous Articles Next Articles
Peiyu WU1(), Yongjun XIE1,*(), Liqiang NIU1(), Haolin JIANG2()
Received:
2019-11-18
Online:
2020-12-18
Published:
2020-12-29
Contact:
Yongjun XIE
E-mail:wupuuu@yahoo.com;yjxie@buaa.edu.cn;liqiangniu@126.com;haolinjiang.cem@gmail.com
About author:
Supported by:
Peiyu WU, Yongjun XIE, Liqiang NIU, Haolin JIANG. Hybrid domain multipactor prediction algorithm and its CUDA parallel implementation[J]. Journal of Systems Engineering and Electronics, 2020, 31(6): 1097-1104.
1 |
RAMIN A, BEHZAD A A comparative study of high-power low-pass filters for satellite communications. Microwave and Optical Technology Letters, 2019, 61 (8): 1968- 1971.
doi: 10.1002/mop.31783 |
2 |
OSCAR M B, ELENA D C, VICENTE E B, et al High-power multicarrier generation for RF breakdown testing. IEEE Trans. on Electron Devices, 2017, 64 (2): 556- 563.
doi: 10.1109/TED.2016.2641243 |
3 |
OSCAR A P, GIUSEPPE A, RICCARDO T, et al Enhanced topology of E-plane resonators for high-power satellite applications. IEEE Trans. on Microwave Theory and Techniques, 2015, 63 (10): 3361- 3373.
doi: 10.1109/TMTT.2015.2462839 |
4 |
MOIZ S, RAMI K Construction of multipactor susceptibility diagrams from map-based theory. IEEE Trans. on Electron Devices, 2019, 66 (8): 3587- 3591.
doi: 10.1109/TED.2019.2922147 |
5 | SATTLER J M, LAKE R A, LAURVICK T, et al. Predicting total secondary electron emission from porous surfaces using a 3D pore geometry. Proc. of the IEEE National Aerospace and Electronics Conference, 2017: 224–230. |
6 |
HUBBLE A A, FELDMAN M S, PARTRIDGE P T, et al Evolution of multipactor breakdown in multicarrier systems. Physics of Plasmas, 2019, 26 (5): 053502.
doi: 10.1063/1.5087069 |
7 |
VAGUE J, MELGAREJO J C, BORIA V E, et al Experimental validation of multipactor effect for ferrite materials used in L- and S-band nonreciprocal microwave components. IEEE Trans. on Microwave Theory and Techniques, 2019, 67 (6): 2151- 2161.
doi: 10.1109/TMTT.2019.2915546 |
8 |
ZHANG J W, WANG H G, LIU C L, et al A dynamical model of microwave window breakdown at vacuum/dielectric interface. Physics of Plasmas, 2019, 26 (9): 093511.
doi: 10.1063/1.5111410 |
9 |
DANIEL G I, OSCAR M, BENITO G M, et al Multipactor RF breakdown in coaxial transmission lines with digitally modulated signals. IEEE Trans. on Electron Devices, 2016, 63 (10): 4096- 4103.
doi: 10.1109/TED.2016.2596801 |
10 |
WEN H, YANG H P, KUANG H Y Global threshold prediction of multicarrier multipactor with time distribution and material coefficients. IEEE Trans. on Electromagnetic Compatibility, 2018, 60 (5): 1163- 1170.
doi: 10.1109/TEMC.2017.2763955 |
11 |
WANG X B, SHEN J H, WANG J Y, et al Monte Carlo analysis of occurrence thresholds of multicarrier multipactors. IEEE Trans. on Microwave Theory and Techniques, 2017, 65 (8): 2734- 2748.
doi: 10.1109/TMTT.2017.2661744 |
12 | BS EN 14777 - 2004. Space engineering: multipacting design and test. Netherlands: ESA Publication Division, 2003. |
13 | VICENTE C, MATTES M, WOLK D, et al. FEST3D—a simulation tool for multipactor prediction. Proc. of the 5th International Workshop on Multipactor, Corona and Passive Intermodulation in Space RF Hardware, 2005: 11−17. |
14 |
EASTWOOD J W The virtual particle electromagnetic particle-mesh method. Computer Physics Communications, 1991, 64 (2): 252- 266.
doi: 10.1016/0010-4655(91)90036-K |
15 |
CHEN J N, WANG J G, TAO Y L, et al Simulation of SGEMP using particle-in-cell method based on conformal technique. IEEE Trans. on Nuclear Science, 2019, 66 (5): 820- 826.
doi: 10.1109/TNS.2019.2911933 |
16 | ABREU P, FONSECA R A, PEREIRA J M, et al PIC codes in new processors: a full relativistic PIC code in CUDA-enabled hardware with direct visualization. IEEE Trans. on Plasma Science, 2010, 39 (2): 675- 685. |
17 |
KONG X, HUANG M C, REN C, et al Particle-in-cell simulations with charge-conserving current deposition on graphic processing units. Journal of Computational Physics, 2011, 230 (4): 1676- 1685.
doi: 10.1016/j.jcp.2010.11.032 |
18 | LI M, YE X D, XU F, et al Discontinuous Galerkin finite element time domain method for analysis of ferrite circulator with non-conforming meshes. Applied Computational Electromagnetics Society Journal, 2018, 33 (12): 1346- 1351. |
19 | ZHAO Z T, WANG X S, QIAO G Y, et al Effect of bainite morphology on deformation compatibility of mesostructure in ferrite/bainite dual-phase steel: mesostructure-based finite element analysis. Materials & Design, 2019, 180, UNSP107870. |
20 |
WANG X M, LIU S, LI X, et al GPU-accelerated finite-difference time-domain method for dielectric media based on CUDA. International Journal of RF and Microwave Computer‐Aided Engineering, 2016, 26 (6): 512- 518.
doi: 10.1002/mmce.20997 |
21 | DEMIR V, ELSHERBENI A Z Compute unified device architecture (CUDA) based finite-difference time-domain (FDTD) implementation. Applied Computational Electromagnetics Society Journal, 2010, 25 (4): 303- 314. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||