Journal of Systems Engineering and Electronics ›› 2020, Vol. 31 ›› Issue (6): 1087-1096.doi: 10.23919/JSEE.2020.000081
• ELECTRONICS TECHNOLOGY • Next Articles
Huamin TAO(), Qiuqun DENG*(), Shanzhu XIAO()
Received:
2020-03-15
Online:
2020-12-18
Published:
2020-12-29
Contact:
Qiuqun DENG
E-mail:Taohmpeach@163.com;dengqiuqun75@163.com;mountbamboo@vip.163.com
About author:
Huamin TAO, Qiuqun DENG, Shanzhu XIAO. Reconstruction of time series with missing value using 2D representation-based denoising autoencoder[J]. Journal of Systems Engineering and Electronics, 2020, 31(6): 1087-1096.
Table 2
Comparison on MSE of different reconstruction methods"
Dataset | MSE | |||
Raw time series | GASF time series | Mean | AR | |
ECG200 | 0.000 5 | 0.000 3 | 0.018 6 | 0.031 4 |
Face all | 0.000 7 | 0.001 7 | 0.029 9 | 0.059 2 |
Swedish leaf | 0.001 8 | 0.000 9 | 0.014 3 | 0.040 3 |
OSU leaf | 0.001 0 | 0.000 6 | 0.018 8 | 0.026 9 |
Wafer | 0.000 2 | 0.002 4 | 0.031 3 | 0.031 4 |
50 words | 0.001 9 | 0.001 1 | 0.018 5 | 0.052 3 |
Coffee | 0.057 9 | 0.004 0 | 0.013 1 | 0.006 1 |
Table 4
Classification accuracy of different methods on part of UCR time series"
Dataset | 1D-CNN | 1D-CNN-0.2 | GASF-CNN | GASF-CNN-0.2 | RP-CNN | RP-CNN-0.2 |
Swedish leaf | 0.913 4 | 0.330 1 | 0.923 0(64) | 0.900 6(64) | 0.942 3(32) | 0.916 6(32) |
Face all | 0.830 7 | 0.801 1 | 0.757 3(64) | 0.738 4(64) | 0.757 0(64) | 0.738 4(64) |
ECG200 | 0.859 9 | 0.840 0 | 0.920 0(20) | 0.910 0(20) | 0.930 0(20) | 0.890 0(20) |
Wafer | 0.994 4 | 0.993 8 | 0.994 4(64) | 0.990 9(64) | 0.997 4(20) | 0.995 0(20) |
OSU leaf | 0.454 5 | 0.446 2 | 0.590 0(64) | 0.545 4(64) | 0.595 0(64) | 0.573 0(64) |
Coffee | 1.000 | 1.000 | 1.000(64) | 1.000(64) | 1.000(64) | 1.000(64) |
1 | BOX G E P, JENKINS G M Time series analysis: forecasting and control. Journal of Time, 1977, 19 (3): 343- 344. |
2 | CHATFIELD C. The analysis of time series: an introduction. Boca Raton: CRC Press, 2016. |
3 |
YOZGATLIGIL C, ASLAN S, IYIGUN C, et al Comparison of missing value imputation methods in time series: the case of Turkish meteorological data. Theoretical and Applied Climatology, 2013, 112 (1/2): 143- 167.
doi: 10.1007/s00704-012-0723-x |
4 | PRATAMA I, PERMANASARI A E, ARDIYANTO I, et al. A review of missing values handling methods on time-series data. Proc. of the International Conference on Information Technology Systems and Innovation, 2016: 1−6. |
5 |
LEE K J, SIMPSON J A Introduction to multiple imputation for dealing with missing data. Respirology, 2014, 19 (2): 162- 167.
doi: 10.1111/resp.12226 |
6 | PENG L A comparison study of missing value processing methods. Computer Science, 2004, 31 (10): 155- 156,174. |
7 | LITTLE R J A, RUBIN D B. Statistical analysis with missing data. Hoboken: Wiley, 2019. |
8 | LOBATO F, SALES C, ARAUJO I, et al Multi-objective genetic algorithm for missing data imputation. Pattern Recognition Letters, 2015, 68 (15): 126- 131. |
9 |
BANBURA M, MODUGNO M Maximum likelihood estimation of factor models on data sets with arbitrary pattern of missing data. Journal of Applied Econometrics, 2014, 29 (1): 133- 160.
doi: 10.1002/jae.2306 |
10 | HAYKIN S. Neural networks: a comprehensive foundation. Upper Saddle River: Prentice-Hall, 1999. |
11 |
LECUN Y, BENGIO Y, HINTON G Deep learning. Nature, 2015, 521 (7553): 436- 444.
doi: 10.1038/nature14539 |
12 | BENGIO Y, COURVILLE A, VINCENT P Representation learning: a review and new perspectives. IEEE Trans. on Pattern Analysis & Machine Intelligence, 2013, 35 (8): 1798- 1828. |
13 |
FAWAZ H I, FORESTIER G, WEBER J, et al Deep learning for time series classification: a review. Data Mining and Knowledge Discovery, 2019, 33, 917- 963.
doi: 10.1007/s10618-019-00619-1 |
14 |
DENG Q W, LU H Z, HU M F, et al Exo-atmospheric infrared objects classification using recurrence-plots-based convolutional neural networks. Applied Optics, 2019, 58 (1): 164- 171.
doi: 10.1364/AO.58.000164 |
15 | YOON J. GAIN: missing data imputation using generative adversarial nets. Proc. of the 35th International Conference on Machine Learning, 2018: 1−8. |
16 |
GUO Z J, WAN Y M, YE H A data imputation method for multivariate time series based on generative adversarial network. Neurocomputing, 2019, 360, 185- 197.
doi: 10.1016/j.neucom.2019.06.007 |
17 | ASSENDORP J P. Deep learning for anomaly detection in multivariate time series data. Hamburg: Hochschule für Angewandte Wissenschaften, 2017. |
18 | ESTEBAN C, HYLAND S L, RTSCH G. Real-valued (medical) time series generation with recurrent conditional gans. arXiv, 2017: arXiv170602633E. |
19 | VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders. Proc. of the 25th International Conference on Machine learning, 2008: 1096–1103. |
20 |
HINTON G E, SALAKHUTDINOV R R Reducing the dimensionality of data with neural networks. Science, 2006, 313 (5786): 504- 507.
doi: 10.1126/science.1127647 |
21 | KAMPFFMEYER M, LOKSE S, BIANCHI F M, et al. Deep kernelized autoencoders. SHARMA P, BIANCHI F, ed. Image Analysis. Cham: Springer, 2017: 419–430. |
22 | BIANCHI F M, LIVI L, Mikalsen K, et al. Learning representations for multivariate time series with missing data using temporal kernelized autoencoders. arXiv, 2018: arXiv1805.03473. |
23 | SILVA D F, SOUZA V M A D, BATISTA G E A P A. Time series classification using compression distance of recurrence plots. Proc. of the IEEE International Conference on Data Mining, 2013: 687−696. |
24 | SOUZA V M A D, SILVA D F, BATISTA G E A P A. Extracting texture features for time series classification. Proc. of the 22nd International Conference on Pattern Recognition, 2014: 1425−1430. |
25 | WANG Z, OATES T. Imaging time-series to improve classification and imputation. Proc. of the 24th International Joint Conference on Artificial Intelligence, 2015: 3939−3945. |
26 |
ECKMANN J P, KAMPHORST S O, RUELLE D Recurrence plots of dynamical systems. Europhysics Letters, 1987, 4 (9): 973- 977.
doi: 10.1209/0295-5075/4/9/004 |
27 |
MARWAN N, DONGES J F, ZOU Y, et al Complex network approach for recurrence analysis of time series. Physics Letters A, 2009, 373 (46): 4246- 4254.
doi: 10.1016/j.physleta.2009.09.042 |
28 |
MARWAN N, ROMANO M C, THIEL M, et al Recurrence plots for the analysis of complex systems. Physics Reports, 2007, 438 (5/6): 237- 329.
doi: 10.1016/j.physrep.2006.11.001 |
29 | HATAMI N, GAVET Y, DEBAYLE J Bag of recurrence patterns representation for time-series classification. Pattern Analysis & Applications, 2019, 22, 877- 887. |
30 |
DAU H A, BAGNALL A, KAMGAR K, et al The UCR time series classification archive. IEEE/CAA Journal of Automatica Sinica, 2019, 6 (6): 1293- 1305.
doi: 10.1109/JAS.2019.1911747 |
31 |
LI J H, STRUZIK Z, ZHANG L Q, et al Feature learning from incomplete EEG with denoising autoencoder. Neurocomputing, 2015, 165, 23- 31.
doi: 10.1016/j.neucom.2014.08.092 |
32 | KINGMA D P, BA J. Adam: a method for stochastic optimization. arXiv, 2014: arXiv1412.6980K. |
[1] | Xinjian MA, Shiqian LIU, Huihui CHENG. Civil aircraft fault tolerant attitude tracking based on extended state observers and nonlinear dynamic inversion [J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 180-187. |
[2] | Zhiyuan SHEN, Qianqian WANG, Xinmiao CHENG. A sparsity adaptive compressed signal reconstruction based on sensing dictionary [J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1345-1353. |
[3] | Shuai LIU, Xue ZHANG, Fenggang YAN, Jun WANG, Ming JIN. Fast and accurate covariance matrix reconstruction for adaptive beamforming using Gauss-Legendre quadrature [J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 38-43. |
[4] | Ying LI, Guanghong GONG, Lin SUN. A fast, accurate and dense feature matching algorithm for aerial images [J]. Journal of Systems Engineering and Electronics, 2020, 31(6): 1128-1139. |
[5] | Ke ZHANG, Le CUI, Yao YIN. A multivariate grey incidence model for different scale data based on spatial pyramid pooling [J]. Journal of Systems Engineering and Electronics, 2020, 31(4): 770-779. |
[6] | Haiwen SUN, Xiaofang XIE. Threat evaluation method of warships formation air defense based on AR(p)-DITOPSIS [J]. Journal of Systems Engineering and Electronics, 2019, 30(2): 297-307. |
[7] | Kun ZHANG, Weiren KONG, Peipei LIU, Jiao SHI, Yu LEI, Jie ZOU. Assessment and sequencing of air target threat based on intuitionistic fuzzy entropy and dynamic VIKOR [J]. Journal of Systems Engineering and Electronics, 2018, 29(2): 305-310. |
[8] | Yong Shuai, Tailiang Song, and Jianping Wang. Integrated parallel forecasting model based on modified fuzzy time series and SVM [J]. Systems Engineering and Electronics, 2017, 28(4): 766-. |
[9] | Xiaoshi Fan, Yingjie Lei, and Yanan Wang. Adaptive partition intuitionistic fuzzy time series forecasting model [J]. Systems Engineering and Electronics, 2017, 28(3): 585-596. |
[10] | Chengguang Wu, Hongqiang Wang, Bin Deng, Yuliang Qin, and Wuge Su. Autofocus technique for ISAR imaging of uniformly rotating targets based on the ExCoV method [J]. Systems Engineering and Electronics, 2017, 28(2): 267-275. |
[11] | Bendong Zhao, Huanzhang Lu, Shangfeng Chen, Junliang Liu, and Dongya Wu. Convolutional neural networks for time series classification [J]. Systems Engineering and Electronics, 2017, 28(1): 162-. |
[12] | Yan Zhang, Jichang Guo, and Xianguo Li. Efficient recovery of group-sparse signals with truncated and reweighted l2,1-regularization [J]. Systems Engineering and Electronics, 2017, 28(1): 19-. |
[13] | Ya’nan Wang, Yingjie Lei, Yang Lei, Xiaoshi Fan. Multi-factor high-order intuitionistic fuzzy time series forecasting model [J]. Journal of Systems Engineering and Electronics, 2016, 27(5): 1054-1062. |
[14] | Lin Zhang and Yicheng Jiang. Imaging algorithm of multi-ship motion target based on compressed sensing [J]. Systems Engineering and Electronics, 2016, 27(4): 790-. |
[15] | Yong Han, Qingyuan Fang,Fenggang Yan,Ming Jin, and Xiaolin Qiao. Joint DOA and polarization estimation for unequal power sources based on reconstructed noise subspace [J]. Systems Engineering and Electronics, 2016, 27(3): 501-513. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||