1 |
BAI X R, ZHOU F, HUI Y. Obtaining JTF-signature of space-debris from incomplete and phase-corrupted data. IEEE Trans. on Aerospace and Electronic Systems, 2017, 53 (3): 1169- 1180.
doi: 10.1109/TAES.2017.2667899
|
2 |
SHAN M H, GUO J, GILL E. Review and comparison of active space debris capturing and removal methods. Progress in Aerospace Sciences, 2016, 80, 18- 32.
doi: 10.1016/j.paerosci.2015.11.001
|
3 |
ZHANG F, HUANG P F. Releasing dynamics and stability control of maneuverable tethered space net. IEEE-ASME Trans. on Mechatronics, 2017, 22 (2): 983- 993.
doi: 10.1109/TMECH.2016.2628052
|
4 |
HUANG P F, WANG D R, MENG Z J, et al. Adaptive postcapture backstepping control for tumbling tethered space robot-target combination. Journal of Guidance, Control, and Dynamics, 2016, 39 (1): 150- 156.
doi: 10.2514/1.G001309
|
5 |
HUANG P F, ZHANG F, CAI J, et al. Dexterous tethered space robot: design, measurement, control, and experiment. IEEE Trans. on Aerospace and Electronic Systems, 2017, 53 (3): 1452- 1468.
doi: 10.1109/TAES.2017.2671558
|
6 |
HAN Y H, HONG J T. Retrieval strategy for failed satellite on tether's optimal balance swing angle. Journal of Systems Engineering and Electronics, 2019, 30 (4): 749- 759.
doi: 10.21629/JSEE.2019.04.12
|
7 |
GAO Y, CHIEN S. Review on space robotics: toward top-level science through space exploration. Science Robotics, 2017, 2 (7): eaan5074.
doi: 10.1126/scirobotics.aan5074
|
8 |
OHKAMI Y, KAWANO I. Autonomous rendezvous and docking by engineering test satellite VⅡ: a challenge of Japan in guidance, navigation and control-break well memorial lecture. Acta Astronautica, 2003, 53 (1): 1- 8.
doi: 10.1016/S0094-5765(02)00195-9
|
9 |
WILSON J R. Satellite hopes ride on orbital express. Aerospace America, 2007, 45 (2): 30- 35.
|
10 |
YAN L, XU W F, HU Z H, et al. Multi-objective configuration optimization for coordinated capture of dual-arm space robot. Acta Astronautica, 2020, 167, 189- 200.
doi: 10.1016/j.actaastro.2019.11.002
|
11 |
HUANG P F, XU Y S, LIANG B. Dynamic balance control of multi-arm free-floating space robots. International Journal of Advanced Robotic Systems, 2005, 2 (2): 117- 124.
|
12 |
SHI L L, KAYASTHA S, KATUPITIYA J, et al. Robust coordinated control of a dual-arm space robot. Acta Astronautica, 2017, 138 (9): 475- 489.
|
13 |
WANG Y Z, HU Q L, SHI Z. Trajectory planning of free floating space robot for minimizing spacecraft attitude disturbance. Systems Engineering and Electronics, 2011, 33 (10): 2277- 2281.
|
14 |
ZHANG B, LIANG B, WANG X Q, et al. Manipulability measure of dual-arm space robot and its application to design an optimal configuration. Acta Astronautica, 2016, 128, 322- 329.
doi: 10.1016/j.actaastro.2016.07.040
|
15 |
PRADHAN S, MODI V J, MISRA A K, et al. Order $n$ formulation for flexible multibody systems in tree topology: Lagrangian approach. Journal of Guidance, Control, and Dynamics, 1997, 20 (4): 665- 672.
doi: 10.2514/2.4129
|
16 |
SCHIEHLEN W. Multibody system dynamics: roots and perspectives. Multibody System Dynamics, 1997, 1 (2): 149- 188.
doi: 10.1023/A:1009745432698
|
17 |
SHABANA A A. Flexible multibody dynamics: review of past and recent developments. Multibody System Dynamics, 1997, 1 (2): 189- 222.
doi: 10.1023/A:1009773505418
|
18 |
BANERJEE A K. Contributions of multibody dynamics to space flight: a brief review. Journal of Guidance, Control, and Dynamics, 2003, 26 (3): 385- 394.
doi: 10.2514/2.5069
|
19 |
YAN L, YUAN H, XU W F, et al. Generalized relative Jacobian matrix of space robot for dual-arm coordinated capture. Journal of Guidance, Control, and Dynamics, 2018, 41 (5): 1202- 1208.
doi: 10.2514/1.G003237
|
20 |
VAFA Z, DUBOWSKY S. On the dynamics of manipulators in space using the virtual manipulator approach. Proc. of the IEEE International Conference on Robotics and Automation, 1987, 579- 585.
|
21 |
UMETANI Y, YOSHIDA K. Resolved motion rate control of space manipulators with generalized Jacobian matrix. IEEE Trans. on Robotic and Automation, 1989, 5 (3): 303- 314.
doi: 10.1109/70.34766
|
22 |
PAPADOPOULOS E, DUBOWSKY S. On the dynamic singularities in the control of free-floating space manipulators. Journal of Dynamic Systems, Measurement, and Control, 1993, 115 (1): 44- 52.
doi: 10.1115/1.2897406
|
23 |
MOOSAVIAN S A A, PAPADOPOULOS E. Explicit dynamics of space free-flyers with multiple manipulators via SPACEMAPLE. Advanced Robotics, 2004, 18 (2): 223- 244.
doi: 10.1163/156855304322758033
|
24 |
RAIBET M H, CRAIG J J. Hybrid position/force control of manipulators. Journal of Dynamic Systems, Measurement, and Control, 1981, 103 (2): 126- 133.
doi: 10.1115/1.3139652
|
25 |
FAROOQ M, WANG D B, DAR N U. Improved hybrid position/force controller design of a flexible robot manipulator using a sliding observer. Journal of Systems Engineering and Electronics, 2009, 20 (1): 146- 158.
|
26 |
HOGAN N. Impedance control: an approach to manipulation: part I—theory. Journal of Dynamic Systems, Measurement, and Control, 1985, 107 (1): 1- 7.
|
27 |
MOOSAVIAN S A A, RASTEGARI R. Multiple-arm space free-flying robots for manipulating objects with force tracking restrictions. Robotics and Autonomous Systems, 2006, 54 (10): 779- 788.
doi: 10.1016/j.robot.2006.05.005
|
28 |
RASTEGARI R, MOOSAVIAN S A A. Multiple impedance control of space free-flying robots using virtual object grasp. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and System, 2006, 3125- 3130.
|
29 |
SWAIN A K, MORRIS A S. Dynamic control of multi-arm co-operating manipulator systems. Robotica, 2004, 22 (3): 271- 283.
doi: 10.1017/S0263574703005599
|
30 |
NAKANISHI H, YOSHIDA K. Impedance control for free-flying space robots-basic equations and applications. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, 3137- 3142.
|