1 |
BAI T, WANG D. Cooperative trajectory optimization for unmanned aerial vehicles in a combat environment. Science China: Information Sciences, 2019, 62 (1): 52- 54.
|
2 |
KOYUNCU E, SHABANIGHAZIKELAYEH M, SEFEROGLU H. Deployment and trajectory optimization of UAVs: a quantization theory approach. Proc. of the IEEE Wireless Communications and Networking Conference, 2018, 1- 6.
|
3 |
XU C, HUANG D Q. Error analysis for target localization with unmanned aerial vehicle electro-optical detection platform. Chinese Journal of Scientific Instrument, 2013, 34 (10): 2265- 2270.
|
4 |
SHAO H. Research on high precision target localization technology in UAV. Nanjing, China: Nanjing University of Aeronautics and Astronautics, 2014.
|
5 |
PACK D, YORK G, FIERRO R. Information-based cooperative control for multiple unmanned aerial vehicles. Proc. of the IEEE International Conference, 2006.
doi: 10.1109/ICNSC.2006.1673187
|
6 |
CAMPBELL M E, WHITACRE W W. Cooperative tracking using vision measurements on seascan UAVs. IEEE Trans. on Control Systems Technology, 2007, 15 (4): 613- 627.
doi: 10.1109/TCST.2007.899177
|
7 |
WANG L, PENG H, ZHU H Y, et al. Cooperative tracking of ground moving target using unmanned aerial vehicles in cluttered environment. Control Theory & Applications, 2011, 28 (3): 300- 308.
|
8 |
YU Z J, SUN Y R, ZHU Y F, et al. High precision algorithm of dual-aircraft cooperative locating with angle and distance Information. Ordnance Industry Automation, 2019, 38 (2): 1- 5.
|
9 |
ZHAO S, CHEN B M, LEE T H. Optimal sensor placement for target localization and tracking in 2D and 3D. International Journal of Control, 2013, 86 (10): 1687- 1704.
doi: 10.1080/00207179.2013.792606
|
10 |
LEE W, BANG H, LEEGHIM H. Cooperative localization between small UAVs using a combination of heterogeneous sensors. Aerospace Science and Technology, 2013, 27 (1): 105- 111.
doi: 10.1016/j.ast.2012.07.002
|
11 |
MORENO S, ALIMS D, PASCOAL A M, et al. Optimal sensor placement for multiple target positioning with range-only measurements in two-dimensional scenarios. Sensors, 2013, 13 (8): 10674- 10710.
doi: 10.3390/s130810674
|
12 |
TICHAVSKY P, MURAVCHIK C H. Posterior Cramer-Rao bounds for discrete-time nonlinear filtering. IEEE Trans. on Signal Processing, 1998, 46 (5): 1386- 1395.
doi: 10.1109/78.668800
|
13 |
ADRIAN N B, BARIS F, BRIAN D O A, et al. Optimality analysis of sensor-target localization geometries. Automatica, 2010, 46 (3): 479- 492.
doi: 10.1016/j.automatica.2009.12.003
|
14 |
SAMEERA S P. Trajectory optimization for target localization using small unmanned aerial vehicles. Proc. of the AIAA Guidance, Navigation, and Control Conference, 2009, 1- 25.
|
15 |
SONIA M, FRANCESCO B. Optimal sensor placement and motion coordination for target tracking. Automatica, 2006, 42 (4): 661- 668.
doi: 10.1016/j.automatica.2005.12.018
|
16 |
ERIC W F. Sensitivity of cooperative target geolocalization to orbit coordination. Journal of Guidance, Control, and Dynamics, 2008, 31 (4): 1028- 1040.
doi: 10.2514/1.32810
|
17 |
WANG L. Modeling and optimization for multi-UAVs cooperative target tracking. Changsha, China: National University of Defense Technology, 2011.
|
18 |
ZHONG Y, WU X Y, HUANG S C, et al. Optimality analysis of sensor-target geometries for bearing-only passive localization in three-dimensional space. Chinese Journal of Electronics, 2016, 25 (2): 391- 396.
doi: 10.1049/cje.2016.03.029
|
19 |
LOGOTHETIS A, ISAKSSON A, EVANS R J. An information theoretic approach to observer path design for bearings-only tracking. Proc. of the 36th IEEE Conference on Decision and Control, 1997, 3132- 3137.
|
20 |
FREW E W. Observer trajectory generation for target-motion estimation using monocular vision. California, America: Stanford University, 2003.
|
21 |
ZHOU K, ROUMELIOTIS S I. Optimal motion strategies for range-only constrained multi-sensor target tracking. IEEE Trans. on Robotics, 2008, 24 (5): 1168- 1185.
doi: 10.1109/TRO.2008.2004488
|
22 |
YAO M S. Higher algebra. Shanghai: Fudan University Press, 2003.
|
23 |
JORGE N, STEPHEN J W. Numerical optimization. 2nd ed New York: Springer Science Business Media, 2006.
|
24 |
HOU X R, SHAO J W. Spherical distribution of 5 points with maximal distance sum. Discrete and Computational Geometry, 2011, 46 (1): 156- 174.
|
25 |
ZHANG S H, YANG J D, ZHANG H L, et al. Dual trajectory optimization for a cooperative internet of UAVs. IEEE Communications Letters, 2019, 23 (6): 1093- 1096.
doi: 10.1109/LCOMM.2019.2913631
|
26 |
ZHONG C M, ZHAO Z Y, SUN H B, et al. A closed-loop optimal control for multiple unmanned aerial vehicles cooperative target tracking. Journal of Detection & Control, 2012, 34 (3): 13- 18.
|
27 |
DI B. Key issues in reconnaissance-oriented cooperative control of multiple unmanned aerial vehicles. Beijing, China: Beijing University of Aeronautics and Astronautics, 2015.
|
28 |
LIU Z, GAO X G, FU X W. Co-optimization of communication and observation for multiple UAVs in cooperative target tracking. Control and Decision, 2018, 33 (10): 1747- 1756.
|