Journal of Systems Engineering and Electronics ›› 2020, Vol. 31 ›› Issue (5): 859-870.doi: 10.23919/JSEE.2020.000066
• Electronics Technology • Next Articles
Chen TIAN(), Yang PEI*(), Peng HOU(), Qian ZHAO()
Received:
2019-05-14
Online:
2020-10-30
Published:
2020-10-30
Contact:
Yang PEI
E-mail:tianchen@mail.nwpu.edu.cn;yang@nwpu.edu.c;yaphets640@mail.nwpu.edu.cn;zhaoqian1192@mail.nwpu.edu.cn
About author:
TIAN Chen was born in 1992. He received his B.S. and M.S. degrees in aircraft design from Northwestern Polytechnical University in 2013 and 2016, respectively. He is currently pursuing his Ph.D. degree at Northwestern Polytechnical University. His research interests include aircraft design, aircraft susceptibility assessment, electronic countermeasures, and multi-target tracking. E-mail: Supported by:
Chen TIAN, Yang PEI, Peng HOU, Qian ZHAO. Multi-target tracking algorithm based on PHD filter against multi-range-false-target jamming[J]. Journal of Systems Engineering and Electronics, 2020, 31(5): 859-870.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | JI Z, WANG G, ZHANG X, et al. Technique of anti-multi-range-false-target jamming for radar network based on double discrimination. Proc. of the IEEE International Conference on Radar, 2017, 1- 5. |
2 | HUANG D T, CUI G L, YU X X, et al. Joint range-velocity deception jamming suppression for SIMO radar. IET Radar, Sonar & Navigation, 2018, 13 (1): 113- 122. |
3 | LU G, LEI Y, BU Y, et al. Adaptive cancellation for multiple range false radar targets. Proc. of the IEEE International Congress on Image and Signal Processing, 2014, 1535- 1539. |
4 |
ZHAO S S, ZHANG L R, ZHOU Y, et al. Signal fusion-based algorithms to discriminate between radar targets and deception jamming in distributed multiple-radar architectures. IEEE Sensors Journal, 2015, 15 (11): 6697- 6706.
doi: 10.1109/JSEN.2015.2440769 |
5 | ABDALLA A, ABDALLA H, RAMASAN M, et al. Overview of frequency diverse array in radar ECCM applications. Proc. of the IEEE International Conference on Communication, 2017, 1- 9. |
6 | QUAN Y, LI Y C, WU Y, et al. Moving target detection for frequency agility radar by sparse reconstruction. Review of Scientific Instruments, 2016, 87 (9): 811- 815. |
7 | ZHAO S S, ZHOU Y, ZHANG L R, et al. Discrimination between radar targets and deception jamming in distributed multiple-radar architectures. IET Radar, Sonar & Navigation, 2017, 11 (7): 1124- 1131. |
8 | AHMED A, SHOKRALLAH A M G, YUAN Z, et al. Deceptive jamming suppression in multistatic radar based on coherent clustering. Journal of Systems Engineering and Electronics, 2018, 29 (2): 269- 277. |
9 | SUN D X, WANG G H, LI Y C, et al. Low observable target tracking processing in the presence of multi-range-false-target jamming. Acta Electronica Sinica, 2016, 44 (4): 826- 837. |
10 | LI Y C, WANG G H, SUN D X, et al. Technique against self-protection repeating track false-target deceptive jamming for radar. Systems Engineering and Electronics, 2015, 37 (6): 1242- 1248. |
11 | XIONG W, YIN J, ZHANG Y, et al. Trilinear decomposition-based spatial-polarisational filter method for deception jamming suppression of radar. IET Radar, Sonar & Navigation, 2016, 10 (4): 765- 773. |
12 |
WEN C, PENG J, ZHOU Y, et al. Enhanced three-dimensional joint domain localized STAP for airborne FDA-MIMO radar under dense false-target jamming scenario. IEEE Sensors Journal, 2018, 18 (10): 4154- 4166.
doi: 10.1109/JSEN.2018.2820905 |
13 |
HABTEMARIAM B, THARMARASA R, THAYAPARAN T, et al. A multiple-detection joint probabilistic data association filter. IEEE Journal of Selected Topics in Signal Processing, 2013, 7 (3): 461- 471.
doi: 10.1109/JSTSP.2013.2256772 |
14 |
SI W J, WANG L W, QU Z Y. A measurement-driven adaptive probability hypothesis density filter for multitarget tracking. Chinese Journal of Aeronautics, 2015, 28 (6): 1689- 1698.
doi: 10.1016/j.cja.2015.10.004 |
15 |
YANG J L, YANG L, YUAN Y, et al. Probability hypothesis density filter with adaptive parameter estimation for tracking multiple maneuvering targets. Chinese Journal of Aeronautics, 2016, 29 (6): 1740- 1748.
doi: 10.1016/j.cja.2016.09.010 |
16 |
SI W J, WANG L W, ZHI Q. Multi-target state extraction for the SMC-PHD filter. Sensors, 2016, 16 (6): 901- 915.
doi: 10.3390/s16060901 |
17 |
MAHLER R. Multitarget Bayes filtering via first-order multitarget moments. IEEE Trans. on Aerospace and Electronic Systems, 2003, 39 (4): 1152- 1178.
doi: 10.1109/TAES.2003.1261119 |
18 |
LI T C, CORCHADO J M, SUN S, et al. Multi-EAP: extended EAP for multi-estimate extraction for SMC-PHD filter. Chinese Journal of Aeronautics, 2017, 30 (1): 368- 379.
doi: 10.1016/j.cja.2016.12.025 |
19 |
LI T C, SUN S, SATTAR T P. High-speed sigma-gating SMC-PHD filter. Signal Processing, 2013, 93 (9): 2586- 2593.
doi: 10.1016/j.sigpro.2013.03.011 |
20 | CLARK D, RISTIC B, VO B N, et al. Bayesian multi-object filtering with amplitude feature likelihood for unknown object SNR. IEEE Trans. on Signal Processing, 2010, 58 (1): 26- 37. |
21 |
ZHENG Y M, SHI Z G, LU R X, et al. An efficient data-driven particle PHD filter for multitarget tracking. IEEE Trans. on Industrial Informatics, 2013, 9 (4): 2318- 2326.
doi: 10.1109/TII.2012.2228875 |
22 |
MAHLER R. PHD filters of higher order in target number. IEEE Trans. on Aerospace and Electronic Systems, 2007, 43 (4): 1523- 1543.
doi: 10.1109/TAES.2007.4441756 |
23 |
REUTER S, VO B T, VO B N. The labeled multi-Bernoulli filter. IEEE Trans. on Signal Processing, 2014, 62 (12): 3246- 3260.
doi: 10.1109/TSP.2014.2323064 |
24 |
VO B N, VO B T, PHUNG D. Labeled random finite sets and the Bayes multi-target tracking filter. IEEE Trans. on Signal Processing, 2014, 62 (24): 6554- 6567.
doi: 10.1109/TSP.2014.2364014 |
25 |
RISTIC B, CLARK D, VO B N, et al. Adaptive target birth intensity for PHD and CPHD filters. IEEE Trans. on Aerospace and Electronic Systems, 2012, 48 (2): 1656- 1668.
doi: 10.1109/TAES.2012.6178085 |
26 |
RUAN Y, WILLETT P. Multiple model PMHT and its application to the second benchmark radar tracking problem. IEEE Trans. on Aerospace and Electronic Systems, 2004, 40 (4): 1337- 1350.
doi: 10.1109/TAES.2004.1386885 |
27 | LI X H, LUO J Q, WANG W T. Adaptive detection of phase quantized DRFM deception jamming. Journal of Data Acquisition and Processing, 2015, 30 (6): 1302- 1309. |
28 |
YUAN C S, WANG J, LEI P, et al. Multi-target tracking based on multi-bernoulli filter with amplitude for unknown clutter rate. Sensors, 2015, 15 (12): 30385- 30402.
doi: 10.3390/s151229804 |
29 | TIAN X. Radar deceptive jamming detection based on goodness-of-fit testing. Journal of Information and Computational Science, 2012, 13 (9): 3839- 3847. |
30 |
GRECO M, GINI F, FARINA A. Radar detection and classification of jamming signals based on cone classes. IEEE Trans. on Signal Processing, 2008, 56 (5): 1984- 1993.
doi: 10.1109/TSP.2007.909326 |
31 | SKOLNIK M I. Introduction to radar system. 3rd ed. New York: McGraw-Hill, 2002. |
32 |
YANG Y, GAO W, ZHANG X. Robust Kalman filtering with constraints: a case study for integrated navigation. Journal of Geodesy, 2010, 84 (6): 373- 381.
doi: 10.1007/s00190-010-0374-6 |
33 |
SCHUHMACHER D, VO B T, VO B N. A consistent metric for performance evaluation of multi-object filters. IEEE Trans. on Signal Processing, 2008, 56 (8): 3447- 3457.
doi: 10.1109/TSP.2008.920469 |
34 |
VO B T, VO B N, CANTONI A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Trans. on Signal Processing, 2009, 57 (2): 409- 423.
doi: 10.1109/TSP.2008.2007924 |
[1] | Mahmoudreza HADAEGH, Hamid KHALOOZADEH, Mohammadtaghi BEHESHTI. Augmented input estimation in multiple maneuvering target tracking [J]. Journal of Systems Engineering and Electronics, 2019, 30(5): 841-851. |
[2] | Xinglin SHEN, Zhiyong SONG, Hongqi FAN, Qiang FU. Fast density peak-based clustering algorithm for multiple extended target tracking [J]. Journal of Systems Engineering and Electronics, 2019, 30(3): 435-447. |
[3] | Jinlong Yang, Peng Li, Zhihua Li, and Le Yang. Multiple extended target tracking algorithm based on Gaussian surface matrix [J]. Journal of Systems Engineering and Electronics, 2016, 27(2): 279-289. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||