Journal of Systems Engineering and Electronics ›› 2020, Vol. 31 ›› Issue (4): 751-760.doi: 10.23919/JSEE.2020.000050
• Systems Engineering • Previous Articles Next Articles
Daoqing ZHANG(), Mingyan JIANG*()
Received:
2019-09-29
Online:
2020-08-25
Published:
2020-08-25
Contact:
Mingyan JIANG
E-mail:zhang_dao_qing@163.com;jiangmingyan@sdu.edu.cn
About author:
ZHANG Daoqing was born in 1994. He is currently working toward his M.E. degree in the School of Information Science and Engineering, Shandong University, China. His research interests include evolutionary computation and machine learning. E-mail: Supported by:
Daoqing ZHANG, Mingyan JIANG. Parallel discrete lion swarm optimization algorithm for solving traveling salesman problem[J]. Journal of Systems Engineering and Electronics, 2020, 31(4): 751-760.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 3
Experimental results of DLSO algorithm for 17 TSP problems of TSPLIB"
Problem | OPT | Best | Average | Error/% | Std | Time/s |
Eil51 | 426 | 428.87 | 429.70 | 0.87 | 1.61 | 8.51 |
Berlin52 | 7 542 | 7 544.37 | 7544.37 | 0.031 | 0 | 8.92 |
St70 | 675 | 677.11 | 678.78 | 0.56 | 3.38 | 17.89 |
Pr76 | 108 159 | 108 159.43 | 108 572.35 | 0.38 | 341.96 | 22.12 |
KroA100 | 21 282 | 21 285.44 | 21 370.09 | 0.41 | 44.66 | 61.02 |
KroB100 | 22 141 | 22 142.07 | 22 270.58 | 0.58 | 95.52 | 45.08 |
Lin105 | 14 379 | 14 383.0 | 14 433.33 | 0.38 | 34.23 | 50.55 |
Ch130 | 6 110 | 6 158.08 | 6 201.98 | 1.50 | 30.96 | 93.33 |
Ch150 | 6 528 | 6 530.90 | 6 597.83 | 1.07 | 38.83 | 164.09 |
D198 | 15 780 | 15 808.93 | 15 896.48 | 0.74 | 35.21 | 284.53 |
KroA200 | 29 368 | 29 519.83 | 29 766.27 | 1.37 | 118.37 | 288.19 |
KroB200 | 29 437 | 29 652.94 | 29 994.08 | 1.89 | 226.62 | 285.06 |
Tsp225 | 3 916 | 3 929.51 | 3 977.53 | 1.57 | 21.05 | 397.92 |
A280 | 2 579 | 2 609.54 | 2 650.49 | 2.77 | 33.83 | 768.44 |
Lin318 | 42 029 | 42 744.96 | 43 172.51 | 2.72 | 235.18 | 1 113.98 |
Pcb442 | 50 778 | 52 330.24 | 52 841.26 | 4.06 | 230.75 | 2 883.50 |
Pr1002 | 259 045 | 273 696.03 | 275 825 | 6.47 | 1 189.80 | 34 456.31 |
Table 4
Comparison of the DLSO algorithm with other algorithms for six TSPs"
Problem | OPT | IVRS+2opt | ACO+2opt | ACO+ABC | DLSO+2opt | |||||||||||
Best | Average | Error/% | Best | Average | Error/% | Best | Average | Error/% | Best | Average | Error/% | |||||
Eil51 | 426 | 429.12 | 431.11 | 1.20 | 431.26 | 439.26 | 3.11 | 431.74 | 443.39 | 4.08 | ||||||
Berlin52 | 7 542 | 7 544.37 | 7 547.24 | 0.07 | 7 549.53 | 7 556.59 | 0.19 | 7 544.37 | 7 544.37 | 3.14 | ||||||
St70 | 675 | — | — | — | — | — | — | 687.24 | 700.58 | 3.79 | ||||||
KroA100 | 21 282 | 21 309.43 | 21 498.62 | 1.02 | 22 006.40 | 23 441.80 | 10.15 | 22 122.75 | 22 435.31 | 5.42 | ||||||
Eil101 | 629 | 654.50 | 672.38 | 6.90 | 672.71 | 683.39 | 8.65 | 642.53 | 649.05 | 3.19 | ||||||
Ch150 | 6 528 | — | — | — | — | — | — | 6 641.69 | 6 677.12 | 2.28 | ||||||
D198 | 15 780 | 15 842.52 | 15 972.47 | 1.22 | 16 054.47 | 16 252.93 | 2.30 | — | — | — |
Table 6
Comparison of the PDLSO in a single computer with serial DLSO for nine TSP problems"
Problem | OPT | Serial DLSO | 2-process PLSO | 3-process PLSO | 4-process PLSO | |||||||||||
Time/s | Average | Std | Time/s | Average | Std | Time/s | Average | Std | Time/s | Average | Std | |||||
Eil51 | 426 | 8.64 | 429.70 | 1.61 | 4.74 | 430.64 | 1.68 | 3.14 | 430.65 | 1.51 | 2.52 | 430.46 | 1.13 | |||
Berlin52 | 7 542 | 8.92 | 7 544.37 | 0 | 4.90 | 7 544.37 | 0 | 3.41 | 7 544.37 | 0 | 2.59 | 7 544.37 | 0 | |||
St70 | 675 | 17.90 | 678.78 | 3.38 | 9.55 | 679.07 | 2.31 | 6.58 | 680.09 | 4.12 | 5.27 | 680.58 | 3.48 | |||
KroA100 | 21 282 | 44.66 | 21 370.09 | 61.02 | 23.67 | 21 367.71 | 74.85 | 16.05 | 21 355.29 | 64.71 | 12.81 | 21 344.47 | 66.47 | |||
Ch150 | 6 528 | 134.44 | 6 597.83 | 38.83 | 69.00 | 6 603.26 | 36.87 | 47.09 | 6 627.82 | 40.16 | 38.17 | 6 623.73 | 42.47 | |||
D198 | 15 780 | 283.14 | 15 896.48 | 35.21 | 144.97 | 15 991.86 | 64.46 | 99.25 | 15 914.60 | 38.44 | 78.85 | 15 937.27 | 53.58 | |||
Tsp225 | 3 916 | 397.92 | 3 977.53 | 21.05 | 207.77 | 3 978.96 | 23.06 | 142.46 | 3 986.98 | 25.41 | 113.98 | 3 994.11 | 21.07 | |||
A280 | 2 579 | 768.44 | 2 650.49 | 33.83 | 393.56 | 2 636.71 | 20.51 | 273.71 | 2 659.07 | 26.37 | 217.52 | 2 663.63 | 33.00 | |||
Lin318 | 42 029 | 1 113.98 | 43 172.51 | 235.18 | 564.55 | 43 204.69 | 420.07 | 384.45 | 43 258.12 | 228.34 | 305.92 | 43 271.40 | 310.14 | |||
Pcb442 | 50 778 | 2 883.50 | 52 841.26 | 230.75 | 1 460.11 | 53 057.05 | 363.56 | 992.77 | 53 238.61 | 408.95 | 782.37 | 53 591.85 | 474.61 |
Table 7
Performance of PDLSO in a single computer of nine TSP problems"
Problem | 2-process PDLSO | 3-process PDLSO | 4-process PDLSO | |||||
Eil51 | 1.82 | 0.91 | 2.75 | 0.91 | 3.43 | 0.86 | ||
Berlin52 | 1.82 | 0.91 | 2.62 | 0.87 | 3.44 | 0.86 | ||
St70 | 1.87 | 0.94 | 2.72 | 0.91 | 3.40 | 0.84 | ||
KroA100 | 1.87 | 0.94 | 2.78 | 0.93 | 3.49 | 0.87 | ||
Ch150 | 1.95 | 0.97 | 2.85 | 0.95 | 3.52 | 0.88 | ||
D198 | 1.95 | 0.97 | 2.85 | 0.95 | 3.59 | 0.89 | ||
Tsp225 | 1.92 | 0.96 | 2.79 | 0.93 | 3.49 | 0.87 | ||
A280 | 1.95 | 0.97 | 2.81 | 0.94 | 3.53 | 0.88 | ||
Lin318 | 1.97 | 0.98 | 2.89 | 0.96 | 3.64 | 0.91 | ||
Pcb442 | 1.97 | 0.98 | 2.90 | 0.96 | 3.68 | 0.92 |
Table 8
Performance of PDLSO in double computers wired connection of nine TSP problems"
Problem | 2-process PDLSO | 3-process PDLSO | 4-process PDLSO | |||||
Eil51 | 1.63 | 0.82 | 2.45 | 0.81 | 3.09 | 0.77 | ||
Berlin52 | 1.66 | 0.83 | 2.47 | 0.82 | 3.10 | 0.77 | ||
St70 | 1.67 | 0.83 | 2.51 | 0.83 | 3.25 | 0.81 | ||
KroA100 | 1.69 | 0.84 | 2.55 | 0.85 | 3.30 | 0.82 | ||
Ch150 | 1.73 | 0.86 | 2.58 | 0.85 | 3.38 | 0.84 | ||
D198 | 1.75 | 0.87 | 2.60 | 0.86 | 3.40 | 0.85 | ||
Tsp225 | 1.79 | 0.89 | 2.65 | 0.88 | 3.47 | 0.86 | ||
A280 | 1.80 | 0.90 | 2.67 | 0.89 | 3.45 | 0.86 | ||
Lin318 | 1.80 | 0.90 | 2.68 | 0.89 | 3.47 | 0.87 | ||
Pcb442 | 1.82 | 0.91 | 2.69 | 0.89 | 3.49 | 0.87 |
Table 9
Performance of PDLSO in double computers wireless connection of nine TSP problems"
Problem | 2-process PDLSO | 3-process PDLSO | 4-process PDLSO | |||||
Eil51 | 1.62 | 0.81 | 2.45 | 0.81 | 3.17 | 0.79 | ||
Berlin52 | 1.65 | 0.82 | 2.51 | 0.83 | 3.06 | 0.76 | ||
St70 | 1.68 | 0.84 | 2.51 | 0.83 | 3.25 | 0.81 | ||
KroA100 | 1.68 | 0.84 | 2.57 | 0.85 | 3.29 | 0.82 | ||
Ch150 | 1.72 | 0.86 | 2.58 | 0.86 | 3.34 | 0.83 | ||
D198 | 1.73 | 0.86 | 2.60 | 0.86 | 3.36 | 0.84 | ||
Tsp225 | 1.75 | 0.87 | 2.65 | 0.88 | 3.37 | 0.84 | ||
A280 | 1.79 | 0.89 | 2.67 | 0.89 | 3.44 | 0.86 | ||
Lin318 | 1.79 | 0.89 | 2.68 | 0.89 | 3.46 | 0.86 | ||
Pcb442 | 1.81 | 0.90 | 2.45 | 0.81 | 3.49 | 0.87 |
1 |
HUANG Z, ZHENG Q P, PASILIAO E, et al. A cutting plane method for risk-constrained traveling salesman problem with random arc costs. Journal of Global Optimization, 2019, 74 (4): 839- 859.
doi: 10.1007/s10898-018-0708-0 |
2 | BELLMAN R E, DREYFUS S E. Applied dynamic programming. Princeton, New Jersey: Princeton University Press, 2015. |
3 |
CARRABS F, CERULLI R, SPERANZA M G. A branch-and-bound algorithm for the double travelling salesman problem with two stacks. Networks, 2013, 61 (1): 58- 75.
doi: 10.1002/net.21468 |
4 |
PICHPIBUL T, KAWTUMMACHAI R. An improved Clarke and Wright savings algorithm for the capacitated vehicle routing problem. ScienceAsia, 2012, 38 (3): 307- 318.
doi: 10.2306/scienceasia1513-1874.2012.38.307 |
5 | KARAPETYAN D, GUTIN G. Lin-Kernighan heuristic adaptations for the generalized traveling salesman problem. European Journal of Operational Research, 2011, 208 (3): 221- 232. |
6 | HELSGAUN K. An effective implementation of the Lin-Kernighan traveling salesman heuristic. European Journal of Operational Research, 2000, 126 (1): 106- 130. |
7 | UCHIDA A, ITO Y, NAKANO K. An efficient GPU implementation of ant colony optimization for the traveling salesman problem. Proc. of the 3rd IEEE International Conference on Networking and Computing, 2012, 94- 102. |
8 | JIANG M Y, YUAN D F. Artificial bee colony algorithm and its application. Beijing: Science Press, 2014. |
9 | JIANG M Y, YUAN D F. Artificial fish swarm algorithm and its application. Beijing: Science Press, 2012. |
10 |
KAN J M, ZHANG Y. Application of an improved ant colony optimization on generalized traveling salesman problem. Energy Procedia, 2012, 17, 319- 325.
doi: 10.1016/j.egypro.2012.02.101 |
11 | KEFI S, ROKBANI N, KR{O}MER P, et al. Ant supervised by PSO and 2-opt algorithm, AS-PSO-2Opt, applied to traveling salesman problem. Proc. of the IEEE International Conference on Systems, Man, and Cybernetics, 2016, DOI: 10.1109/SMC.2016.7844999. |
12 |
ZHOU Y, LUO Q, CHEN H, et al. A discrete invasive weed optimization algorithm for solving traveling salesman problem. Neurocomputing, 2015, 151, 1227- 1236.
doi: 10.1016/j.neucom.2014.01.078 |
13 | OUAARAB A, AHIOD B, YANG X S. Discrete cuckoo search algorithm for the travelling salesman problem. Neural Computing and Applications, 2014, 24 (7/8): 1659- 1669. |
14 |
HAN Y Y, GONG D W, SUN X. A discrete artificial bee colony algorithm incorporating differential evolution for the flow-shop scheduling problem with blocking. Engineering Optimization, 2015, 47 (7): 927- 946.
doi: 10.1080/0305215X.2014.928817 |
15 | GENG N, MENG Q, GONG D W, et al. How good are distributed allocation algorithms for solving urban search and rescue problems? A comparative study with centralized algorithms. IEEE Trans. on Automation Science and Engineering, 2018, 16 (1): 478- 485. |
16 |
ZHANG J H, GONG D W, ZHANG Y. A niching PSO-based multi-robot cooperation method for localizing odor sources. Neurocomputing, 2014, 123, 308- 317.
doi: 10.1016/j.neucom.2013.07.025 |
17 | GONG D W, ZHANG Y, QI C L. Localising odour source using multi-robot and anemotaxis-based particle swarm optimisation. IET Control Theory & Applications, 2012, 6 (11): 1661- 1670. |
18 | LIU S J, YANG Y, ZHOU Y Q. A swarm intelligence algorithm—lion swarm optimization. Pattern Recognition and Artificial Intelligence, 2018, 31 (5): 431- 441. |
19 |
MAHDAVI S, RAHNAMAYAN S, DEB K. Opposition based learning: a literature review. Swarm and Evolutionary Computation, 2018, 39, 1- 23.
doi: 10.1016/j.swevo.2017.09.010 |
20 | UMBARKAR A J, SHETH P D. Crossover operations in genetic algorithms: a review. ICTACT Journal on Soft Computing, 2015, 6 (1): 1083- 1092. |
21 | ABDOUN O, ABOUCHABAKA J. A comparative study of adaptive crossover operators for genetic algorithms to resolve the traveling salesman problem. International Journal of Computer Applications, 2011, 31 (11): 49- 57. |
22 |
LALWANI S, SHARMA H, SATAPATHY S C, et al. A survey on parallel particle swarm optimization algorithms. Arabian Journal for Science and Engineering, 2019, 44 (4): 2899- 2923.
doi: 10.1007/s13369-018-03713-6 |
23 |
NALEPA J, BLOCHO M. Co-operation in the parallel memetic algorithm. International Journal of Parallel Programming, 2015, 43 (5): 812- 839.
doi: 10.1007/s10766-014-0343-4 |
24 | FRAHNOW C, KOTZING T. Ring migration topology helps bypassing local optima. Proc. of the International Conference on Parallel Problem Solving from Nature, 2018, 129- 140. |
25 | REINELT G. TSPLIB—a traveling salesman problem library. ORSA Journal on Computing, 1991, 3 (4): 376- 384. |
26 | GUTIN G, PUNNEN A. The traveling salesman problem and its variations. Dordrecht: Kluwer Academic Publishers, 2002. |
27 | GUNDUZ M, KIRAN M S, OZCEYLAN E. A hierarchic approach based on swarm intelligence to solve the traveling salesman problem. Turkish Journal of Electrical Engineering & Computer Sciences, 2015, 23 (1): 103- 117. |
28 | AMDAHL G M. Validity of the single processor approach to achieving large scale computing capabilities. Proc. of the Spring Joint Computer Conference, 1967, 483- 485. |
29 |
GUSTAFSON J L. Reevaluating Amdahl's law. Communications of the ACM, 1988, 31 (5): 532- 533.
doi: 10.1145/42411.42415 |
[1] | Yu Zhang, Jing Chen, and Lincheng Shen. Hybrid hierarchical trajectory planning for a fixed-wing UCAV performing air-to-surface multi-target attack [J]. Journal of Systems Engineering and Electronics, 2012, 23(4): 536-552. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||