1 |
KESHAVARZI M, AMIRI D, PEZESHK A M, et al. A novel method of de-interleaving pulse repetition interval modulated sparse sequences in noisy environment. IEICE Trans. on Fundamentals of Electronics Communications and Computer Sciences, 2014, 97(5): 1136-1139.
|
2 |
BAGHERI M, SEDAAGHI M H. A new approach to pulse de-interleaving based on adaptive thresholding. Turkish Journal of Electrical Engineering and Computer, 2017, 25 (5): 3827- 3838.
|
3 |
MILOJEVIC D J, POPOVIC B M. Improved algorithm for the de-interleaving of radar pulse. IEEE Proceedings of Radar and Signal Processing, 1992, 139 (1): 98- 104.
|
4 |
BAGHERI M, SEDAAGHI M H. A new method for detecting jittered PRI in histogram-based methods. Turkish Journal of Electrical Engineering and Computer, 2018, 26 (3): 1214- 1224.
|
5 |
LOGOTHETIS A, KRISHNAMURTHY V. An interval-amplitude algorithm for de-interleaving stochastic pulse train sources. IEEE Trans. on Signal Processing, 1998, 46 (5): 1344- 1350.
|
6 |
GE Z P, SUN X, REN W J, et al. Improved algorithm of radar pulse repetition interval de-interleaving based on pulse correlation. IEEE Access, 2019, 7, 30126- 30134.
doi: 10.1109/ACCESS.2019.2901013
|
7 |
TORUN O, KOCAMIS M B, ABACI H, et al. De-interleaving of radar signals with stagger PRI and dwell-switch PRI types. Proc. of the 25th Signal Processing and Communications Applications Conference, 2017, 89- 97.
|
8 |
LIU Y C, ZHANG Q Y. Improved method for de-interleaving radar signals and estimating PRI values. IET Radar, Sonar and Navigation, 2018, 12 (5): 506- 514.
doi: 10.1049/iet-rsn.2017.0516
|
9 |
AMINI A, SABOOHI H, HERAWAN T, et al. MuDi-Stream: a multi density clustering algorithm for evolving data stream. Journal of Network and Computer Applications, 2016, 59, 370- 385.
doi: 10.1016/j.jnca.2014.11.007
|
10 |
SILVA L E B, WUNSCH D C. Multi-prototype local density-based hierarchical clustering. Proc. of the International Joint Conference on Neural Networks, 2015, 1- 9.
|
11 |
KOHONEN T. Self-organizing maps. Neural Networks, 2006, 19, 723- 733.
doi: 10.1016/j.neunet.2006.05.001
|
12 |
ZHENG Z Y, CHEN Y Y. An improved pre-processing algorithm of radar signal sorting based on SOFM clustering. Aerospace Electronic Warfare, 2013, 29 (3): 42- 45.
|
13 |
GRANGER E, SAVARIA Y, LAVOIE P, et al. A comparison of self-organizing neural networks for fast clustering of radar pulses. Signal Processing, 1998, 64 (3): 249- 269.
|
14 |
ATA'A A W, ABDULLAH S N. De-interleaving of radar signals and PRF identification algorithms. IET Radar, Sonar and Navigation, 2007, 1 (5): 340- 347.
doi: 10.1049/iet-rsn:20070037
|
15 |
GENCOL K, KARA A. Improvements on de-interleaving of radar pulses in dynamically varying signal environments. Digital Signal Processing, 2017, 69, 86- 93.
doi: 10.1016/j.dsp.2017.06.010
|
16 |
DAI S B, LEI W H, CHENG Y Z, et al. Clustering of DOA data in radar pulse based on SOFM and CDbw. Journal of Electronics, 2014, 31 (2): 107- 114.
|
17 |
GORZAŁCZANY M B, RUDZIŃSKI F. Generalized self-organizing maps for automatic determination of the number of clusters and their multi-prototypes in cluster analysis. IEEE Trans. on Neural Networks and Learning Systems, 2018, 29 (7): 2833- 2845.
|
18 |
MAJEED S, GUPTA A, RAJ D, et al. Uncertain fuzzy self-organization based clustering: interval type-2 fuzzy approach to adaptive resonance theory. Information Sciences, 2018, 424, 69- 90.
doi: 10.1016/j.ins.2017.09.062
|
19 |
AHMED A, RUI Z, MEHDI N, et al. An effective density-based clustering and dynamic maintenance framework for evolving medical datastreams. International Journal of Medical Informatics, 2019, 126, 176- 186.
doi: 10.1016/j.ijmedinf.2019.03.016
|
20 |
ADAM G. Preprocessing and analysis of ECG signals: a self-organizing maps approach. Expert Systems with Applications, 2011, 38 (7): 9008- 9013.
doi: 10.1016/j.eswa.2011.01.119
|
21 |
DINO I, KALLIMANI V P, LAM H L. Using the self organizing map for clustering of text documents. Expert Systems with Applications, 2009, 36 (5): 9584- 9591.
doi: 10.1016/j.eswa.2008.07.082
|
22 |
EVERTON B L, CARLOS A B. Segmentation of connected handwritten digits using self-organizing maps. Expert Systems with Applications, 2013, 40 (15): 5867- 5877.
doi: 10.1016/j.eswa.2013.05.006
|
23 |
UNGLERT K, RADIĆ K, JELLINEK A M, et al. Principal component analysis vs. self-organizing maps combined with hierarchical clustering for pattern recognition in volcano seismic spectra. Journal of Volcanology and Geothermal Research, 2016, 320 (15): 58- 74.
|
24 |
ANIMA M, LAXMIDHAR B, VENKATESH K. Emotion recognition from geometric facial features using self-organizing map. Pattern Recognition, 2014, 47 (3): 1282- 1293.
|