Journal of Systems Engineering and Electronics ›› 2020, Vol. 31 ›› Issue (4): 674-684.doi: 10.23919/JSEE.2020.000043
• Electronics Technology • Previous Articles Next Articles
Caihua WU*(), Jianchao MA(), Xiuwei ZHANG(), Dang XIE()
Received:
2019-03-15
Online:
2020-08-25
Published:
2020-08-25
Contact:
Caihua WU
E-mail:wucaihua2009@163.com;549464509@qq.com;39353745@qq.com;9972653@qq.com
About author:
WU Caihua was born in 1980. She received her B.S. and M.S. degrees in computer application from Ordnance Engineering College in 2003 and 2006 respectively, and Ph.D. degree in weapon system and application from Ordnance Engineering College in 2009. She is currently a lecturer in Air Force Early Warning Academy. Her research interests include machine learning, software reliability and information system. E-mail: Supported by:
Caihua WU, Jianchao MA, Xiuwei ZHANG, Dang XIE. User space transformation in deep learning based recommendation[J]. Journal of Systems Engineering and Electronics, 2020, 31(4): 674-684.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Statics of the datasets"
Data set | Taobao 2014 | Lastfm |
Number of users | 884 | 1 892 |
Number of items | 9 531 | 17 632 |
Number of feedback | 182 880 | 186 479 |
Average feedback per user | 206.88 | 98.57 |
Average feedback per item | 19.18 | 10.58 |
Density | 2.17 | 5.59 |
Kinds of feedback | 4 | 1 |
Table 2
Comparison results on Taobao 2014 Dataset (Test = 10)"
Method | |||||
F1@10 | F1@20 | F1@10 | F1@20 | ||
KNN(user) | 0.026 0(0.000 0) | 0.025 8(0.000 0) | 0.026 0(0.000 0) | 0.025 8(0.000 0) | |
KNN(item) | 0.021 4(0.000 0) | 0.022 3(0.000 0) | 0.021 4(0.000 0) | 0.022 3(0.000 0) | |
Most popular | 0.024 8(0.000 0) | 0.025 7(0.000 0) | 0.024 8(0.000 0) | 0.025 7(0.000 0) | |
WRMF | 0.030 8(0.000 5) | 0.029 5(0.000 4) | 0.029 8(0.000 7) | 0.028 0(0.000 4}) | |
BPRMF | 0.017 1(0.001 3) | 0.018 2(0.001 3) | 0.017 5(0.001 5) | 0.008 4(0.001 0) | |
Weighted BPRMF | 0.007 7(0.001 3) | 0.007 8(0.000 6) | 0.007 6(0.001 4) | 0.008 4(0.000 9) | |
SoftmarginRankingMF | 0.009 8(0.001 8) | 0.011 6(0.001 6) | 0.011 1(0.001 7) | 0.011 7(0.000 9) | |
RNNRec | 0.048 1(0.002 7) | 0.048 2(0.002 2) | 0.045 8(0.002 2) | 0.046 6(0.002 0) | |
TransRNNRec | 0.062 3(0.003 3) | 0.058 3(0.001 5) | 0.066 9(0.001 7) | 0.059 4(0.001 5) | |
GRURec | 0.051 4(0.000 8) | 0.048 8(0.000 9) | 0.051 9(0.002 0) | 0.049 7(0.001 1) | |
TransGRURec | 0.063 3(0.001 8) | 0.058 0(0.002 0) | 0.065 8(0.001 9) | 0.059 3(0.001 3) |
Table 3
Comparison results on Taobao 2014 Dataset (Test = 20)"
Method | | | |||
F1@10 | F1@20 | F1@10 | F1@20 | ||
KNN(user) | 0.036 5(0.000 0) | 0.038 9(0.000 0) | 0.036 5(0.000 0) | 0.038 9(0.000 0) | |
KNN(item) | 0.028 3(0.000 0) | 0.032 1(0.000 0) | 0.028 3(0.000 0) | 0.032 1(0.000 0) | |
Most popular | 0.032 6(0.000 0) | 0.038 0(0.000 0) | 0.032 6(0.000 0) | 0.038 0(0.000 0) | |
WRMF | 0.039 3(0.000 9) | 0.044 3(0.000 3) | 0.035 4(0.001 2) | 0.041 0(0.000 9) | |
BPRMF | 0.022 1(0.001 3) | 0.027 1(0.001 2) | 0.025 8(0.001 2) | 0.029 6(0.001 4) | |
Weighted BPRMF | 0.009 0(0.000 4) | 0.011 2(0.000 6) | 0.010 4(0.001 1) | 0.029 6(0.001 4) | |
SoftmarginRankingMF | 0.013 7(0.001 5) | 0.017 9(0.001 7) | 0.014 6(0.002 7) | 0.018 5(0.002 0) | |
RNNRec | 0.057 6(0.002 1) | 0.064 1(0.001 6) | 0.057 3(0.002 6) | 0.063 7(0.002 1) | |
TransRNNRec | 0.072 2(0.000 5) | 0.074 5(0.001 5) | 0.076 4(0.001 3) | 0.076 8(0.000 7) | |
GRURec | 0.061 0(0.001 2) | 0.068 0(0.000 9) | 0.062 6(0.001 8) | 0.068 0(0.001 8) | |
TransGRURec | 0.073 2(0.001 0) | 0.075 8(0.001 0) | 0.074 4(0.001 7) | 0.075 7(0.001 9) |
Table 4
Comparison results on Lastfm dataset (Test = 10)"
Method | | | |||
F1@10 | F1@20 | F1@10 | F1@20 | ||
KNN(user) | 0.023 1(0.000 0) | 0.021 4(0.000 0) | 0.023 1(0.000 0) | 0.021 4(0.000 0) | |
KNN(item) | 0.025 5(0.000 0) | 0.024 5(0.000 0) | 0.025 5(0.000 0) | 0.024 5(0.000 0) | |
Most popular | 0.013 9(0.000 0) | 0.011 9(0.000 0) | 0.013 9(0.000 0) | 0.011 9(0.000 0) | |
WRMF | 0.023 1(0.000 2) | 0.023 1(0.000 2) | 0.023 3(0.000 2) | 0.023 0(0.000 5) | |
BPRMF | 0.017 5(0.001 3) | 0.017 1(0.000 6) | 0.018 5(0.000 7) | 0.017 5(0.000 4) | |
Weighted BPRMF | 0.017 7(0.001 1) | 0.017 7(0.000 7) | 0.018 8(0.001 4) | 0.018 8(0.001 4) | |
SoftmarginRankingMF | 0.010 6(0.001 7) | 0.011 3(0.001 5) | 0.009 7(0.001 1) | 0.010 4(0.001 1) | |
RNNRec | 0.055 0(0.001 5) | 0.037 4(0.001 1) | 0.070 5(0.001 5) | 0.047 8(0.001 3) | |
TransRNNRec | 0.077 9(0.003 5) | 0.050 6(0.001 3) | 0.094 5(0.001 5) | 0.057 0(0.001 2) | |
GRURec | 0.079 8(0.002 5) | 0.055 8(0.000 7) | 0.111 6(0.001 6) | 0.074 7(0.001 7) | |
TransGRURec | 0.054 0(0.003 4) | 0.040 3(0.001 9) | 0.089 0(0.005 7) | 0.056 0(0.002 6) |
Table 5
Comparison results on Lastfm dataset (Test = 20)"
Method | | | |||
F1@10 | F1@20 | F1@10 | F1@20 | ||
KNN(user) | 0.030 9(0.000 0) | 0.033 1(0.000 0) | 0.030 9(0.000 0) | 0.033 1(0.000 0) | |
KNN(item) | 0.032 8(0.000 0) | 0.035 7(0.000 0) | 0.032 8(0.000 0) | 0.035 7(0.000 0) | |
Most popular | 0.016 7(0.000 0) | 0.018 5(0.000 0) | 0.016 7(0.000 0) | 0.018 5(0.000 0) | |
WRMF | 0.033 9(0.000 3) | 0.036 9(0.000 3) | 0.034 6(0.000 4) | 0.037 8(0.000 3) | |
BPRMF | 0.024 8(0.001 3) | 0.027 2(0.001 1) | 0.027 6(0.000 7) | 0.029 9(0.001 3) | |
Weighted BPRMF | 0.024 8(0.000 9) | 0.027 2(0.001 1) | 0.027 6(0.000 7) | 0.029 9(0.001 3) | |
SoftmarginRankingMF | 0.014 4(0.001 3) | 0.017 1(0.001 4) | 0.013 4(0.001 8) | 0.017 5(0.000 9) | |
RNNRec | 0.056 7(0.000 8) | 0.043 7(0.000 9) | 0.078 0(0.002 2) | 0.059 0(0.002 7) | |
TransRNNRec | 0.082 5(0.001 5) | 0.056 8(0.000 4) | 0.095 7(0.001 3) | 0.062 8(0.000 7) | |
GRURec | 0.095 7(0.002 9) | 0.071 6(0.002 4) | 0.114 2(0.001 4) | 0.085 3(0.000 7) | |
TransGRURec | 0.051 4(0.003 6) | 0.041 9(0.002 0) | 0.076 8(0.005 1) | 0.054 7(0.003 5) |
1 |
WU C H, WANG J W, LIU J T, et al. Recurrent neural network based recommendation for time heterogeneous feedback. Knowledge-Based Systems, 2016, 109, 90- 103.
doi: 10.1016/j.knosys.2016.06.028 |
2 |
LIU J T, WU C H, WANG J W. Gated recurrent units based neural network for time heterogeneous feedback recommendation. Information Sciences, 2018, 423, 50- 65.
doi: 10.1016/j.ins.2017.09.048 |
3 | LIU J T, WU C H. Deep learning based recommendation: a survey. Proc. of the International Conference on Information Science and Applications, 2017: 451-458. |
4 | ZHANG S, YAO L, SUN A. Deep learning based recommender system: a survey and new perspectives. http://arXiv.org/abs/1707.07435. |
5 | SALAKHUTDINOV R, MNIH A, REYHINTON G. Restricted Boltzmann machines for collaborative filtering. Proc. of the 24th International Conference on Machine Learning, 2007: 791-798. |
6 | OORDA V D, DIELEMAN S, SCHRAUWEN B. Deep content-based music recommendation. Proc. of the Annual Conference on Neural Information Processing Systems, 2013: 2643-2651. |
7 | WANG H, WANG N, YEUNG D Y. Collaborative deep learning for recommender systems. Proc. of the 21st International Conference on Knowledge Discovery and Data Mining, 2015: 1235-1244. |
8 | VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, 2010, 11 (12): 3371- 3408. |
9 | WANG C, BLEI D M. Collaborative topic modeling for recommending scientific articles. Proc. of the 17th International Conference on Knowledge Discovery and Data Mining, 2011: 448-456. |
10 | ELKAHKY A M, SONG Y, HE X. A multi-view deep learning approach for cross domain user modeling in recommendation systems. Proc. of the 24th International Conference on World Wide Web, 2015: 278-288. |
11 | WANG J, YU L, ZHANG W, et al. Irgan: a minimax game for unifying generative and discriminative information retrieval models. Proc. of the 40th International Conference on Research and Development in Information Retrieval, 2017: 515-524. |
12 | ZHANG J, CAI H, HUANG T, et al. Distributional representation model for collaborative filtering. http://arXiv.org/abs/1502.04163. |
13 | HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks. http://arXiv.org/abs/1511.06939. |
14 | EBESU T, SHEN B, FANG Y. Collaborative memory network for recommendation systems. Proc. of the Special Interest Group on Information Retrieval, 2018: 515-524. |
15 | LI X P, SHE J. Collaborative variational autoencoder for recommender systems. Proc. of the 23th ACM SIGKDD Conference Knowledge Discovery and Data Mining, 2017: 305-314. |
16 | LIANG D, KRISHNAN R G, HOFFMANM D, et al. Variational autoencoders for collaborative filtering. Proc. of the 27th World Wide Web Conference, 2018: 689-698. |
17 | CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling. http://arXiv.org/abs/1412.3555. |
18 | CHO K, MERRIENBOER B V, GULCEHRE C, et al. Learning phrase representations using RNN encoder decoder for statistical machine translation. http://arXiv.org/abs/1406.1078. |
19 | HINTON G, SRIVASTAVA N, SWERSKY K. Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning. http://www.cs.toronto.edu/tijmen/csc321/slides/lectureslideslec6.pdf. |
20 | CANTADOR I, BRUSILOVSKY P, KUFLIK T. Second workshop on information heterogeneity and fusion in recommender systems. Proc. of the 5th ACM Conference on Recommender Systems, 2011: 387-388. |
21 | HU Y, KOREN Y, VOLINSKY C. Collaborative filtering for implicit feedback datasets. Proc. of the 8th IEEE International Conference on Data Mining, 2008: 263-272. |
22 | GANTNER Z, DRUMOND L, FREUDENTHALER C, et al. Bayesian personalized ranking for non-uniformly sampled items. Proc. of the Knowledge Discovery and Data Mining Cup and Workshop, 2011: 231-247. |
23 | RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback. Proc. of the 25th Conference on Uncertainty in Artificial Intelligence, 2009: 452-461. |
24 |
WEIMER M, KARATZOHLOU A, SMOLA A. Improving maximum-margin matrix factorization. Machine Learning, 2008, 72 (3): 263- 276.
doi: 10.1007/s10994-008-5073-7 |
25 | SREBRO N, RENNIE J D M, JAAKKOLA T S. Maximum-margin matrix factorization. Proc. of the Annual Conference on Neural Information Processing Systems, 2005: 1329-1336. |
26 | GANTNER Z, RENDLE S, FREUDENTHALER C, et al. Mymedialite: a free recommender system library. Proc. of the 5th ACM Conference on Recommender Systems, 2011: 305-308. |
27 | ORAMAS S, OSTUNI V C, NOIAT D, et al. Sound and music recommendation with knowledge graphs. ACM Trans. on Intelligent Systems and Technology, 2016, 8 (2): 1- 21. |
[1] | Jiandong ZHANG, Qiming YANG, Guoqing SHI, Yi LU, Yong WU. UAV cooperative air combat maneuver decision based on multi-agent reinforcement learning [J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1421-1438. |
[2] | Ma Haibo, Zhang Liguo & Chen Yangzhou. Recurrent neural network for vehicle dead-reckoning [J]. Journal of Systems Engineering and Electronics, 2008, 19(2): 351-355. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||