Journal of Systems Engineering and Electronics ›› 2020, Vol. 31 ›› Issue (2): 335-349.doi: 10.23919/JSEE.2020.000011
• Systems Engineering • Previous Articles Next Articles
Xu ZHENG1,2(), Yejun GAO3(), Wuxing JING1,*(), Yongsheng WANG4()
Received:
2018-02-05
Online:
2020-04-30
Published:
2020-04-30
Contact:
Wuxing JING
E-mail:zhengxu_hit@hotmail.com;15311424458@163.com;jingwuxing@hit.edu.cn;wangmeng_ys@qq.com
About author:
ZHENG Xu was born in 1988. He received his M.S. and Ph.D. degrees in Department of Aerospace Engineering from Harbin Institute of Technology in 2014 and 2018 respectively. He is currently an engineer in the 28th Research Institute of China Electronics Technology Group Corporation. His research interests include nonlinear guidance and control, multidisciplinary design optimization. E-mail: Xu ZHENG, Yejun GAO, Wuxing JING, Yongsheng WANG. Multidisciplinary integrated design of long-range ballistic missile using PSO algorithm[J]. Journal of Systems Engineering and Electronics, 2020, 31(2): 335-349.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Boundary value of the constraint function"
Constraint | Boundary | Value |
0.89 | ||
12.0 | ||
1 | ||
5.0 | ||
3.5 | ||
0.89 | ||
12.0 | ||
1 | ||
4.0 | ||
2.0 | ||
0.89 | ||
12.0 | ||
1 | ||
2.0 | ||
1.0 | ||
2.2 | ||
2.7 | ||
3.0 | ||
0.1 | ||
15.0 | ||
8.0 | ||
14.0 | ||
8.0 | ||
14.0 | ||
2.0 | ||
0.5 | ||
0.1 | ||
30.0 | ||
-5.0 | ||
-35.0 | ||
10.0 | ||
10.0 |
Table 4
Constraint function ordering"
Constraint function | Mean value | Standard deviation | Ordering | |
-0.01 | 0.00 | 3.42e-7 | 22 | |
-0.10 | 0.09 | 0.13 | 9 | |
-0.55 | 0.06 | 0.00 | 29 | |
-1.04 | 0.13 | 6.66e-16 | 27 | |
-0.46 | 0.13 | 2.21e-4 | 16 | |
-0.02 | 0.00 | 0.00 | 30 | |
-0.10 | 0.09 | 0.13 | 8 | |
-0.35 | 0.05 | 4.43e-14 | 26 | |
-0.76 | 0.13 | 2.81e-9 | 24 | |
-1.24 | 0.13 | 0.00 | 31 | |
-0.03 | 0.01 | 1.97e-6 | 21 | |
-0.10 | 0.10 | 0.14 | 7 | |
-0.70 | 0.07 | 0.00 | 32 | |
-0.47 | 0.10 | 2.11e-6 | 20 | |
-0.53 | 0.10 | 6.94e-8 | 23 | |
-0.16 | 0.08 | 0.03 | 12 | |
-0.34 | 0.08 | 2.33e-5 | 17 | |
-0.13 | 0.04 | 0.00 | 15 | |
-0.02 | 0.02 | 0.10 | 10 | |
-0.05 | 0.04 | 0.07 | 11 | |
-0.07 | 0.04 | 0.03 | 13 | |
-2.31 | 0.54 | 8.76e-6 | 18 | |
-3.69 | 0.54 | 3.78e-12 | 25 | |
-6.05 | 0.74 | 1.11e-16 | 28 | |
-1.05 | 0.43 | 0.01 | 14 | |
1.22e4 | 8.42e3 | 0.93 | 2 | |
0.00 | 0.01 | 0.79 | 4 | |
-2.06e3 | 3.06e3 | 0.25 | 6 | |
-0.52 | 0.12 | 5.98e-6 | 19 | |
0.01 | 0.12 | 0.52 | 5 | |
6.37e5 | 3.76e5 | 0.95 | 1 | |
5.59e4 | 4.91e4 | 0.87 | 3 |
Table 5
Effect of the design variables on objective function"
| Mean value | Standard value | Ordering | |
1.13e5 | 4.47e3 | 1 | 1 | |
9.12e3 | 6.17e2 | 0.78 | 4 | |
1.35e2 | 7.88 | 1.00 | 2 | |
0.62 | 0.08 | 3.92e-10 | 10 | |
0.59 | 0.06 | 4.36e-6 | 8 | |
-4.15e2 | 68.66 | 8.97e-16 | 15 | |
-1.38e2 | 22.91 | 8.28e-16 | 16 | |
5.14e4 | 3.14e3 | 0.99 | 3 | |
5.34e3 | 4.75e2 | 2.96e-3 | 6 | |
47.37 | 3.80 | 0.06 | 5 | |
0.11 | 0.02 | 1.99e-12 | 13 | |
0.26 | 0.04 | 1.41e-12 | 12 | |
-1.51e2 | 26.70 | 3.43e-17 | 17 | |
-50.28 | 8.91 | 3.23e-17 | 18 | |
1.57e4 | 2.00e3 | 4.25e-10 | 9 | |
5.78e3 | 5.18e2 | 2.25e-3 | 7 | |
3.29 | 0.65 | 1.95e-81 | 21 | |
0.03 | 0.00 | 4.29e-11 | 14 | |
0.20 | 0.03 | 6.70e-13 | 11 | |
-50.83 | 10.85 | 6.01e-21 | 19 | |
-16.94 | 3.62 | 5.72e-21 | 20 | |
0 | 0 | - | - | |
0 | 0 | - | - | |
0 | 0 | - | - | |
0 | 0 | - | - | |
0 | 0 | - | - | |
0 | 0 | - | - | |
0 | 0 | - | - | |
0 | 0 | - | - | |
- | - | - | - | - |
Table 6
Effect of the design variables on cumulative constraints"
| Mean value | Standard deviation | Ordering | |
| -2.06 | 2.34 | 0.28 | 11 |
-0.23 | 0.22 | 0.33 | 9 | |
-7.60e3 | 0.02 | 0.17 | 20 | |
2.05e-3 | 1.64e-3 | 0.40 | 8 | |
8.22e-4 | 3.86e-3 | 0.14 | 28 | |
1.72 | 1.07 | 0.54 | 5 | |
-0.11 | 0.40 | 0.15 | 24 | |
0.38 | 2.27 | 0.14 | 27 | |
0.06 | 0.25 | 0.14 | 26 | |
4.59e-3 | 9.17e-3 | 0.18 | 19 | |
1.76e-4 | 1.01e-4 | 0.59 | 4 | |
1.14e-4 | 1.79e-4 | 0.21 | 16 | |
1.41 | 0.69 | 0.71 | 1 | |
-0.15 | 0.21 | 0.23 | 14 | |
0.34 | 0.80 | 0.17 | 21 | |
0.02 | 0.32 | 0.13 | 29 | |
2.81e-3 | 3.62e-3 | 0.25 | 12 | |
-3.7e-5 | 1.36e-4 | 0.15 | 25 | |
1.35e-4 | 2.25e-4 | 0.20 | 17 | |
1.26 | 0.64 | 0.68 | 2 | |
-0.19 | 0.14 | 0.44 | 7 | |
5.93 | 3.27 | 0.62 | 3 | |
-3.9e-3 | 1.09e-2 | 0.16 | 23 | |
-21.57 | 58.65 | 0.16 | 22 | |
-0.07 | 0.11 | 0.21 | 15 | |
-9.05 | 6.15 | 0.49 | 6 | |
18.23 | 19.22 | 0.30 | 10 | |
-1.40e5 | 2.55e5 | 0.19 | 18 | |
-4.55e4 | 6.03e4 | 0.24 | 13 | |
- | - | - | - | - |
Table 7
Optimization results of design variables"
Design variable | Lower boundary | Upper boundary | Nominal value | Optimization value | |
1.60 | 1.80 | 1.67 | 1.643 | ||
1.20 | 1.40 | 1.32 | 1.356 | ||
1.20 | 1.40 | 1.32 | 1.200 | ||
4.80 | 5.20 | 4.93 | 4.800 | ||
2.70 | 3.10 | 2.87 | 2.707 | ||
0.50 | 0.90 | 0.70 | 0.900 | ||
6.50 | 7.50 | 7.00 | 6.500 | ||
4.00 | 5.00 | 4.70 | 5.000 | ||
4.00 | 5.00 | 4.50 | 4.000 | ||
60.00 | 65.00 | 62.56 | 65.000 | ||
65.00 | 70.00 | 67.58 | 65.000 | ||
60.00 | 65.00 | 63.09 | 60.000 | ||
13.00 | 17.00 | 14.47 | 13.000 | ||
18.00 | 23.00 | 19.64 | 23.000 | ||
20.00 | 26.00 | 23.56 | 25.775 | ||
20.00 | 26.00 | 23.00 | 20.000 | ||
20.00 | 26.00 | 23.00 | 20.000 | ||
20.00 | 26.00 | 23.00 | 25.880 | ||
8.00 | 26.00 | 12.00 | 8.273 | ||
8.00 | 26.00 | 12.00 | 8.018 | ||
8.00 | 26.00 | 12.00 | 14.932 | ||
0.07 | 0.14 | 0.11 | 0.106 | ||
2.00 | 3.50 | 2.83 | 2.702 | ||
-57.34 | -54.34 | -55.84 | -56.047 | ||
4.80 | 5.50 | 5.16 | 4.800 | ||
0.30 | 0.40 | 0.35 | 0.400 | ||
10.00 | 15.00 | 14.00 | 10.002 | ||
-0.20 | 0.00 | -0.10 | -0.080 | ||
-0.40 | 0.00 | -0.20 | -0.400 | ||
- | - | - | - | - |
Table 8
Optimization results of constraint functions"
Constraint function | Pre-optimization | Post-optimization |
-1.00 | -0.005 | |
-1.00 | 0 | |
-1.00 | -0.018 | |
-0.02 | -0.012 | |
-0.06 | -0.074 | |
-0.06 | -0.049 | |
-0.02 | -1.57e3 | |
-0.21 | -6.46e-3 | |
-1.53 | -8.16e2 | |
-8.95 | -0.074 | |
-354.44 | -1.94e3 | |
-16.98 | -3.83e3 |
1 | JIN H G, YAN R X. Operation planing technology for missile penetration. Command Information System and Technology, 2016, 7 (6): 72- 76. |
2 | WANG Z G, CHEN X Q, LUO W C. Theory and application of multidisciplinary design optimization. Beijing: National Defend Industry Press, 2006. |
3 | YANG G. Study on solid ballistic missile system multi-object optimization design. Changsha: National University of Defense Technology, 2009. |
4 |
JILLA C D, MILLER D W. Multi-objective, multidisciplinary design optimization methodology for distributed satellite systems. Journal of Spacecraft and Rockets, 2004, 41 (1): 39- 50.
doi: 10.2514/1.9206 |
5 | PETERSON J A, GARFIELD J R. The automated design of multistage solid rocket vehicles. Proc. of the 12th Propulsion Conference, 1976, 76- 744. |
6 |
BRAUN R D, POWELL R W, LEPSCH R A, et al. Comparison of two multidisciplinary optimization strategies for launch-vehicle design. Journal of Spacecraft and Rockets, 1995, 32 (3): 404- 410.
doi: 10.2514/3.26629 |
7 | JODEI J, EBRAHIMI M, ROSHANIAN J. Multidisciplinary design optimization of a small solid propellant launch vehicle using system sensitivity analysis. Structural and Multidisciplinary Optimization, 2008, 38 (1): 93- 100. |
8 | GONG C L, GU X L, SUN J X. Multidisciplinary design optimization based missile conceptual design. Computer Integrated Manufacturing Systems, 2009, 15 (5): 842- 848. |
9 |
ROSHANIAN J, KESHAVARZ Z. Effect of variable selection on multidisciplinary design optimization: a flight vehicle example. Chinese Journal of Aeronautics, 2007, 20 (1): 86- 96.
doi: 10.1016/S1000-9361(07)60012-0 |
10 | CASTELLINI F, LAVAGNA M, RICCARDI A, et al. Mult-linebreak idisciplinary design optimization models and algorithms for space launch vehicles. Proc. of the 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, 2010, 1- 23. |
11 | BALESDENT M, BEREND N, DEPINCE P, et al. A survey of multidisciplinary design optimization methods in launch vehicle design. Structural and Multidisciplinary Optimization, 2011, 45 (5): 619- 642. |
12 |
EBRAHIMI M, FARMANI M R, ROSHANIAN J. Multidisciplinary design of a small satellite launch vehicle using particle swarm optimization. Structural and Multidisciplinary Optimization, 2011, 44 (6): 773- 784.
doi: 10.1007/s00158-011-0662-7 |
13 | MENON P K A, BRIGGS M, BALLOU R N. Application of numerical optimization techniques for design of optimum trajectory and propulsion subsystem combinations. Proc. of the 25th Aerospace Sciences Meeting, 1987, 15- 22. |
14 | ANDERSON M B, BURKHALTER J E, JENKINS R M. Multi-disciplinary intelligent systems approach to solid rocket motor design part Ⅰ: single and dual goal optimization. Proc. of the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2001, 154- 162. |
15 |
ZEESHAN Q, DONG Y F, NISAR K, et al. Multidisciplinary design and optimization of multistage ground-launched boost phase interceptor using hybrid search algorithm. Chinese linebreak Journal of Aeronautics, 2010, 23 (2): 170- 178.
doi: 10.1016/S1000-9361(09)60201-6 |
16 | ZAFAR N. A multiobjective, multidisciplinary design optimization of solid propellant based space launch vehicle. Structures. Proc. of the Structural Dynamics, and Materials and Co-located Conference, 2013, 1- 15. |
17 | ZAFAR N, LIN S H. Multidisciplinary design optimization of solid launch vehicle using hybrid algorithm. Proc. of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2010, 1- 12. |
18 |
BAYLEY D J, HARTFIELD R J, BURKHALTER J E, et al. Design optimization of a space launch vehicle using a genetic algorithm. Journal of Spacecraft and Rockets, 2008, 45 (4): 733- 740.
doi: 10.2514/1.35318 |
19 |
RIDDLE D B, HARTFIELD R J, BURKHALTER J E, et al. Genetic-algorithm optimization of liquid-propellant missile systems. Journal of Spacecraft and Rockets, 2009, 46 (1): 151- 159.
doi: 10.2514/1.30891 |
20 | SUN P Z, XIA Z X, HUANG L. Integral design optimization for multistage solid rocket and its motor based on genetic algorithm. Journal of Astronautics, 2005, 26 (9): 1- 4. |
21 | LUO Y Z, TANG G J, LIANG Y G, et al. Integrated optimization design of trajectory/system parameters for solid launch vehicles. Journal of Solid Rocket Technology, 2003, 33 (6): 599- 610. |
22 | WANG Y S. Study on propulsion/aerodynamic/ trajectory integrated optimal design for solid ballistic missile. Harbin: Harbin Institute of Technology, 2013. |
23 | ZHU M L. Research on optimization theory and other problems of structure parameters for multistage rockets. Beijing: China Astronautic Publishing House, 2004. |
24 | GUAN Y Z. Rocket engine. Harbin: Harbin Institute of Technology Press, 2006. |
25 | PAUL A R, JAMES E L. Design and selection process for optimized heavy lift launch vehicles. Proc. of the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2012, 232- 239. |
26 |
FANG K T, LIN D K J, WINKER P, et al. Uniform design: theory and application. Technometrics, 2000, 42 (3): 237- 248.
doi: 10.1080/00401706.2000.10486045 |
27 | HUANG G, LU Y, NAN Y. A survey of numerical algorithms for trajectory optimization of flight vehicles. Science China Technological Sciences, 2012, 42 (9): 2538- 2560. |
28 | YANG X X, JIANG Z Y, ZHANG W H. A particle swarm optimization algorithm-based solid launch vehicle ascent trajectory optimum design. Journal of Astronautics, 2010, 31 (5): 1304- 1309. |
29 | LIU H D, MA Z L. A particles swarm optimization algorithm based on uniform design. CAAI Trans. on Intelligent Systems, 2010, 5 (4): 336- 341. |
30 | VERTER G, SOBIESZCZANSKI-SOBIESKI J. Particle swarm optimization. AIAA Journal, 2003, 41 (8): 1583- 1589. |
31 | SHI Y, EBERHART R C. Fuzzy adaptive particle swarm optimization. Proc. of the Congress on Evolutionary Computation, 2001, 101- 106. |
32 | YANG X X, LI X B, FEI X. Overview of intelligent optimization algorithm and its application in flight vehicles optimization design. Journal of Astronautics, 2009, 30 (6): 2051- 2061. |
[1] | Jun CHEN, Xudong GAO, Jia RONG, Xiaoguang GAO. A situation awareness assessment method based on fuzzy cognitive maps [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1108-1122. |
[2] | Bing WANG, Pengfei ZHANG, Yufeng HE, Xiaozhi WANG, Xianxia ZHANG. Scenario-oriented hybrid particle swarm optimization algorithm for robust economic dispatch of power system with wind power [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1143-1150. |
[3] | Jianwei SUN, Chao WANG, Qingzhan SHI, Wenbo REN, Zekun YAO, Naichang YUAN. Intelligent optimization methods of phase-modulation waveform [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 916-923. |
[4] | Zihang DING, Junwei XIE, Zhengjie LI. Adaptive transmit beamspace optimization design based on RD-log-FDA radar [J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 91-96. |
[5] | Shiyun LI, Sheng ZHONG, Zhi PEI, Wenchao YI, Yong CHEN, Cheng WANG, Wenzhu ZHANG. Multi-objective reconfigurable production line scheduling for smart home appliances [J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 297-317. |
[6] | Yuxiao KANG, Shuhua MAO, Yonghong ZHANG, Huimin ZHU. Fractional derivative multivariable grey model for nonstationary sequence and its application [J]. Journal of Systems Engineering and Electronics, 2020, 31(5): 1009-1018. |
[7] | Hongzhi LI, Yong WANG. Particle swarm optimization for rigid body reconstruction after micro-Doppler removal in radar analysis [J]. Journal of Systems Engineering and Electronics, 2020, 31(3): 488-499. |
[8] | Haowei ZHANG, Junwei XIE, Jiaang GE, Zhaojian ZHANG, Wenlong LU. Finite sensor selection algorithm in distributed MIMO radar for joint target tracking and detection [J]. Journal of Systems Engineering and Electronics, 2020, 31(2): 290-302. |
[9] | Mingnan TANG, Shijun CHEN, Xuehe ZHENG, Tianshu WANG, Hui CAO. Sensors deployment optimization in multi-dimensional space based on improved particle swarm optimization algorithm [J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 969-982. |
[10] | Zilong Cheng, Li Fan, and Yulin Zhang. Multi-agent decision support system for missile defense based on improved PSO algorithm [J]. Systems Engineering and Electronics, 2017, 28(3): 514-525. |
[11] | Yongjian Yang, Xiaoguang Fan, Zhenfu Zhuo, Shengda Wang, Jianguo Nan, and Wenkui Chu. Improved particle swarm optimization based on particles’ explorative capability enhancement [J]. Systems Engineering and Electronics, 2016, 27(4): 900-. |
[12] | Lu Wang, Qinghua Xing, and Yifan Mao. Reentry trajectory rapid optimization for hypersonic vehicle satisfying waypoint and no-fly zone constraints [J]. Systems Engineering and Electronics, 2015, 26(6): 1277-1290. |
[13] | Ying Zhang, Rennong Yang, Jialiang Zuo, and Xiaoning Jing. Enhancing MOEA/D with uniform population initialization, weight vector design and adjustment using uniform design [J]. Journal of Systems Engineering and Electronics, 2015, 26(5): 1010-1022. |
[14] | Huicheng Hao, Wei Jiang, and Yijun Li. Improved algorithms to plan missions for agile earth observation satellites [J]. Journal of Systems Engineering and Electronics, 2014, 25(5): 811-821. |
[15] | Jianjun Qi, Bo Guo, Hongtao Lei, and Tao Zhang. Solving resource availability cost problem in project scheduling by pseudo particle swarm optimization [J]. Journal of Systems Engineering and Electronics, 2014, 25(1): 69-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||