Journal of Systems Engineering and Electronics ›› 2020, Vol. 31 ›› Issue (2): 432-446.doi: 10.23919/JSEE.2020.000019
• Reliability • Previous Articles
Tao WANG(), Jinyan CAI*(), Yafeng MENG(), Sai ZHU()
Received:
2019-03-22
Online:
2020-04-30
Published:
2020-04-30
Contact:
Jinyan CAI
E-mail:wangtao920110@126.com;cjyrad@163.com;myfrad@163.com;szhumail@163.com
About author:
WANG Tao was born in 1992. He is a doctoral student in Army Engineering University. He received his M.S. degree in control science and engineering from Ordnance Engineering College in 2014. His research interests are fault detection method, self-repairing technology and reliability evaluation method for bio-inspired electronic system. E-mail: Supported by:
Tao WANG, Jinyan CAI, Yafeng MENG, Sai ZHU. A reliability evaluation method for embryonic cellular array based on Markov status graph model[J]. Journal of Systems Engineering and Electronics, 2020, 31(2): 432-446.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Working states of cell elimination ECR"
Faulty FU number | Working status number | State |
0 | $C_C^0$ | $C_{0}$ |
1 | $C_C^1$ | $C_1 -C_{C_C^1 }$ |
2 | $C_C^2$ | $C_{C_C^1 + 1} - C_{C_C^1 + C_C^2 }$ |
$ \vdots $ | $ \vdots $ | $ \vdots $ |
$C-c$ | $C_C^{C-c}$ | $C_{\sum\limits_{i = 0}^{C - c - 1} {C_C^i } } - C_{\sum\limits_{i= 1}^{C - c} {C_C^i } }$ |
$C-c+1$ | $C_C^{C-c+1}$ | $F_1 - F_{C_C^{C - c + 1} }$ |
1 | Fn |
Table 2
Working states of cell elimination ECR"
Faulty working unit number | Faulty redundant unit number | Working status number | State |
0 | 0 | $C_{C - c}^0$ | $R_{0}$ |
1 | $C_{C - c}^1$ | $R_{1}- R_{C- c}$ | |
2 | $C_{C - c}^2$ | $R_{C - c + 1} - R_{C - c + C_{C - c}^2 }$ | |
$ \vdots $ | $ \vdots $ | $ \vdots $ | |
$C-c$ | $C_{C - c}^{C - c}$ | $R_{\sum\limits_{i = 1}^{C - c} {C_{C - c}^i } }$ | |
1 | 0 | $C_c^1 \cdot C_{C - c}^0$ | $F_1 - F_{C_c^1 \cdot C_{C - c}^0 }$ |
1 | $C_c^1 \cdot C_{C - c}^1$ | $F_{C_c^1 \cdot C_{C - c}^0 + 1} - F_{C_c^1 \cdot(\sum\limits_{i = 0}^1 {C_{C - c}^i })}$ | |
2 | $C_c^1 \cdot C_{C - c}^2$ | $F_{C_c^1 \cdot (\sum\limits_{i = 0}^1 {C_{C - c}^i }) + 1} - F_{C_c^1 \cdot (\sum\limits_{i = 0}^2 {C_{C - c}^i })}$ | |
$ \vdots $ | $ \vdots $ | $ \vdots $ | |
$C-c$ | $C_c^1 \cdot C_{C - c}^{C - c}$ | $F_{C_c^1 \cdot (\sum\limits_{i = 0}^{C - c - 1} {C_{C - c}^i }) + 1} - F_{C_c^1 \cdot (\sum\limits_{i = 0}^{C - c} {C_{C - c}^i })}$ |
Table 4
MTTF values of six kinds of ECAs h"
Reliability model and self-repairing strategy | ECA scale (R × C(r × c)) | |||||
5×5(3×3) | 10×10(6×6) | 30×30(15×15) | 60×60(30×30) | 100×100(45×45) | 200×200(90×90) | |
k-out-of-n model and cell elimination | 1.198 5E5 | 9.565 0E4 | .225 5E5 | 1 1.188 0E5 | 1.374 7E5 | 1.357 2E5 |
MSG and cell elimination | 1.198 5E5 | 9.565 0E4 | 1.225 5E5 | 1.188 0E5 | 1.374 7E5 | 1.357 2E5 |
k-out-of-n model and row elimination | 4.351 9E4 | 1.793 4E4 | 8.260 3E3 | 3.990 1E3 | 3.017 2E3 | 1.493 7E3 |
MSG and row elimination | 4.351 9E4 | 1.793 4E4 | 8.260 3E3 | 3.990 1E3 | 3.017 2E3 | 1.493 7E3 |
Table 5
MTTF values of six kinds of cell elimination ECAs with different p h"
p | ECA1 | ECA2 | ECA3 | ECA4 | ECA5 | ECA6 |
1 | 1.198 5E5 | 9.565 0E4 | 1.225 5E5 | 1.188 0E5 | 1.374 7E5 | 1.357 2E5 |
0.95 | 1.078 4E5 | 7.859 7E4 | 5.896 1E4 | 2.062 7E4 | 8.066 9E3 | 1.877 7E3 |
0.9 | 9.581 2E4 | 6.130 3E4 | 2.096 1E4 | 5.393 2E3 | 1.866 8E3 | 4.386 1E2 |
0.85 | 8.415 1E4 | 4.618 0E4 | 9.645 2E3 | 2.308 3E3 | 7.924 3E2 | 1.910 0E2 |
0.8 | 7.317 6E4 | 3.426 3E4 | 5.358 9E3 | 1.255 4E3 | 4.360 4E2 | 1.064 1E2 |
Table 6
MTTF values of six kinds of row elimination ECAs with different p h"
p | ECA1 | ECA2 | ECA3 | ECA4 | ECA5 | ECA6 |
1 | 4.351 9E4 | 1.793 4E4 | 8.260 3E3 | 3.990 1E3 | 3.017 2E3 | 1.493 7E3 |
0.95 | 3.987 7E4 | 1.552 8E4 | 5.242 9E3 | 1.782 2E3 | 8.061 8E2 | 1.942 9E2 |
0.9 | 3.649 4E4 | 1.344 6E4 | 3.466 8E3 | 9.518 4E2 | 3.656 1E2 | 86.639 8 |
0.85 | 3.335 6E4 | 1.164 9E4 | 2.399 8E3 | 5.946 7E2 | 2.222 9E2 | 53.746 0 |
0.8 | 3.045 0E4 | 1.010 1E4 | 1.740 4E3 | 4.158 9E2 | 1.554 1E2 | 37.983 8 |
1 | MISRA K. Reliability analysis and prediction. New York: Elsevier, 1992. |
2 |
MANGE D, SANCHEZ E, STAUFFER A, et al. Embryonics: a new methodology for designing field-programmable gate arrays with self-repair and self-replicating properties. IEEE Trans. on Very Large Scale Integration Systems, 1998, 6 (3): 387- 399.
doi: 10.1109/92.711310 |
3 | ORTEGA C, TYRRELL A. Self-repairing multicellular hardware: a reliability analysis. Lecture Notes in Computer Science, 1999, 1674 (1): 442- 446. |
4 | ORTEGA C, TYRRELL A. Reliability analysis in self-repairing embryonic systems. Proc. of the 1st NASA/DoD Workshop on Evolvable Hardware, 1999, 120- 128. |
5 | PRODAN L, UDRESCU M, VLADUTIU M. Survivability of embryonic memories: analysis and design principles. Proc. of the NASA/DoD Conference of Evolution Hardware, 2005, 280- 289. |
6 | ZHANG Z, WANG Y R. Method to self-repair reconfiguration strategy selection of embryonic cellular array on reliability analysis. Proc. of the NASA/ESA Conference on Adaptive Hardware and Systems, 2014, 225- 232. |
7 | ZHANG Z, WANG Y R. Method to reliability improving of chip self-healing hardware by array configuration reformation. Acta Aeronautica et Astronautica Sinica, 2014, 35 (12): 3392- 3402. |
8 | ZHANG Z, WANG Y R. Cell granularity optimization method of embryonics hardware in application design process. Acta Aeronautica et Astronautica Sinica, 2016, 37 (11): 3502- 3511. |
9 | ZHU S, CAI J Y, MENG Y F, et al. Evaluation of target circuit realized on embryonics array with faulty cells. Acta Armamentarii, 2017, 37 (11): 2120- 2127. |
10 | WANG T, CAI J Y, MENG Y F, et al. Research on the configuration of idle cells in embryonics electronic cell array. Acta Aeronautica et Astronautica Sinica, 2017, 38 (4): 166- 181. |
11 | WANG T, CAI J Y, MENG Y F, et al. Reliability analysis of bus-based embryonic array based on multi-state system. Journal of Beijing Aeronautics and Astronautics, 2018, 44 (3): 593- 604. |
12 | ORTEGA C, MANGE D, SMITH S. Embryonics: a bio-Inspired cellular architecture with fault-tolerant properties. Genetic Programming and Evolvable Machines, 2000, 1 (3): 187- 215. |
13 | LIN Y, LUO W J, QIAN H, et al. Analysis of optimization design in $n\times n$ array embryonic system applications. Journal of University of Science and Technology of China, 2007, 37 (2): 171- 176. |
14 | ZHU S, CAI J Y, MENG Y F, et al. Gene backup number selection method for embryonics cell. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42 (2): 328- 336. |
15 | ZHU S, CAI J Y, MENG Y F. Partial-DNA cyclic memory for bio-inspired electronic cell. Genetic Programming and Evolvable Machines, 2016, 17 (2): 83- 117. |
16 | WANG T, CAI J Y, MENG Y F, et al. Mathematical description method for typical embryonic electronic system structure and performance. Acta Armamentarii, 2018, 39 (7): 1340- 1351. |
17 | WANG T, CAI J Y, MENG Y F, et al. Idle cells optimum selection method for bus-based embryonics electronic cell array. Acta Electronica Sinica, 2018, 46 (6): 1461- 1467. |
18 | WANG T, CAI J Y, MENG Y F, et al. Optimal selection of cell number of bus-based embryonic electronic system based on integer nonlinear programming model. Acta Armamentarii, 2018, 39 (6): 1132- 1143. |
19 |
WANG T, CAI J Y, MENG Y F, et al. Embryonic array configuration optimization method based on reliability and hardware consumption. Chinese Journal of Aeronautics, 2019, 32 (3): 639- 652.
doi: 10.1016/j.cja.2018.08.018 |
20 | CUI L R, GAO H D, MO Y C. Reliability for $k$-out-of-$n$: $F$ balanced systems with $m$ sectors. ⅡSE Transactions, 2018, 50 (5): 381- 393. |
21 |
LIN C, CUI L R, DAVID C, et al. An approximation method for evaluating the reliability of a dynamic $k$-out-of-$n$: $F$ system subjected to cyclic alternating operation conditions. Proc. of the Institution of Mechanical Engineers Part O: Journal of Risk and Reliability, 2017, 231 (2): 109- 120.
doi: 10.1177/1748006X16689541 |
22 | MO Y H, XING L D, CUI L R, et al. MDD-based performability analysis of multi-state linear consecutive-$k$-out-of-$n$: $F$ systems. Reliability Engineering & System Safety, 2017, 166, 124- 131. |
23 | HU Y C. Evaluation of reliability of a fault-tolerance computer system by Markov status graph. Journal of University of Electronic Science and Technology of China, 2001, 30 (2): 175- 180. |
24 | ORTEGA C. Embryonics: a bio-inspired fault-tolerant multicellular system. York: University of York, 2000. |
25 | CUI L R, WU B. Extended phase-type models for multistate competing risk systems. Reliability Engineering & System Safety, 2019, 181, 1- 16. |
26 | LISNIANSKI A, FRENKEL I, DING Y. Multi-state system reliability analysis and optimization for engineers and industrial managers. London: Springer, 2010. |
27 | SONG Y, LIU S Y, FENG H L. Reliability analysis of consecutive $k$-out-of-$n$: $F$ repairable system with multi-state component. Systems Engineering and Electronics, 2006, 28 (2): 310- 316. |
28 |
HUANG N, CHEN Y, HOU D, et al. Application reliability for communication networks and its analysis method. Journal of Systems Engineering and Electronics, 2011, 22 (6): 1030- 1036.
doi: 10.3969/j.issn.1004-4132.2011.06.022 |
[1] | Ziwei ZHANG, Qisheng GUO, Zhiming DONG, Hongxiang LIU, Ang GAO, Pengcheng QI. Operational effectiveness evaluation based on the reduced conjunctive belief rule base [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1161-1172. |
[2] | Peng SHANG, Xue WANG, Decai ZOU, Ziyue CHU, Yao GUO. Acquisition performance of B1I abounding with 5G signals [J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 563-574. |
[3] | Luda ZHAO, Bin WANG, Jun HE, Xiaoping JIANG. SE-DEA-SVM evaluation method of ECM operational disposition scheme [J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 600-611. |
[4] | ZHANG Ao, Zhihua WANG, Qiong WU, Chengrui LIU. Generalized degradation reliability model considering phase transition [J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 748-758. |
[5] | Xiaomei LIU, Naiming XIE. Grey-based approach for estimating software reliability under nonhomogeneous Poisson process [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 360-369. |
[6] | Ying CHEN, Yanfang WANG, Song YANG, Rui KANG. System reliability evaluation method considering physical dependency with FMT and BDD analytical algorithm [J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 222-232. |
[7] | Yunkai DENG, Jiaxin ZHU, Weiming TIAN, Cheng HU, Wenyu YANG. Constrained geometry analysis to resolve 3-D deformations from three ground-based radars [J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1263-1269. |
[8] | Zhigeng FANG, Shuang WU, Xiaoli ZHANG, Yunke SUN. ADC-GERT network parameter estimation model for mission effectiveness of joint operation system [J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1394-1406. |
[9] | Yun LI, Kaige JIANG, Ting ZENG, Wenbin CHEN, Xiaoyang LI, Deyong LI, Zhiqiang ZHANG. Belief reliability modeling and analysis for planetary reducer considering multi-source uncertainties and wear [J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1246-1262. |
[10] | Peng YANG, Haoyu XIE, Jing QIU. System level test selection based on combinatorial dependency matrix [J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 984-994. |
[11] | Qingan QIU, Lirong CUI. Reliability modelling based on dependent two-stage virtual age processes [J]. Journal of Systems Engineering and Electronics, 2021, 32(3): 711-721. |
[12] | Junliang LI, Yueliang CHEN, Yong ZHANG, Zhuzhu ZHANG, Weijie FAN. Availability modelling for periodically inspected systems under mixed maintenance policies [J]. Journal of Systems Engineering and Electronics, 2021, 32(3): 722-730. |
[13] | Tianpei ZU, Rui KANG, Meilin WEN. Graduation formula: a new method to construct belief reliability distribution under epistemic uncertainty [J]. Journal of Systems Engineering and Electronics, 2020, 31(3): 626-633. |
[14] | Qinzi XIAO, Miyuan SHAN, Mingyun GAO, Xinping XIAO. Grey information coverage interaction relational decision making and its application [J]. Journal of Systems Engineering and Electronics, 2020, 31(2): 359-369. |
[15] | Junru REN, Wenhao GUI. A statistical inference for generalized Rayleigh model under Type-Ⅱ progressive censoring with binomial removals [J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 206-223. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||