Journal of Systems Engineering and Electronics ›› 2020, Vol. 31 ›› Issue (1): 206-223.doi: 10.21629/JSEE.2020.01.20
• Reliability • Previous Articles Next Articles
Received:
2019-03-18
Online:
2020-02-20
Published:
2020-02-25
Contact:
Wenhao GUI
E-mail:18121639@bjtu.edu.cn;whgui@bjtu.edu.cn
About author:
REN Junru was born in 1996. She received her bachelor's degree from School of Science, Beijing Jiaotong University. Now, she is studying for her graduate degree in statistics of Department of Mathematics, Beijing Jiaotong University. Her research interests are lifetime data analysis, lifetime distributions study and reliability theory. E-mail: Supported by:
Junru REN, Wenhao GUI. A statistical inference for generalized Rayleigh model under Type-Ⅱ progressive censoring with binomial removals[J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 206-223.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Type-Ⅱ progressive censoring with binomial removals"
Failure times | Number of failure units | Random removal | Number of remaining units |
1 | 1 | ||
2 | 1 | ||
1 | |||
1 | 0 |
Table 2
MLE of p for different (n, m)"
AB | MSE | Cover | |||||
5 | 0.543 0 | 0.043 0 | 0.033 1 | 0.254 1 | 0.831 9 | 84.2 | |
10 | 7 | 0.576 8 | 0.076 8 | 0.055 3 | 0.248 1 | 0.905 5 | 82.6 |
9 | 0.698 4 | 0.198 4 | 0.142 1 | 0.420 5 | 0.976 3 | 45.6 | |
8 | 0.530 4 | 0.030 4 | 0.018 5 | 0.291 5 | 0.769 3 | 92.0 | |
16 | 10 | 0.542 5 | 0.042 5 | 0.024 9 | 0.271 4 | 0.813 7 | 91.3 |
14 | 0.614 9 | 0.114 9 | 0.080 3 | 0.274 4 | 0.955 4 | 71.4 | |
10 | 0.523 2 | 0.023 2 | 0.014 4 | 0.308 0 | 0.738 4 | 92.7 | |
20 | 15 | 0.550 1 | 0.050 1 | 0.031 1 | 0.260 4 | 0.839 8 | 86.6 |
18 | 0.610 6 | 0.110 6 | 0.080 2 | 0.271 6 | 0.949 6 | 71.0 | |
10 | 0.517 0 | 0.017 0 | 0.009 0 | 0.339 3 | 0.694 6 | 93.8 | |
25 | 15 | 0.524 7 | 0.024 7 | 0.014 1 | 0.309 0 | 0.740 3 | 93.3 |
20 | 0.550 4 | 0.050 4 | 0.030 9 | 0.260 4 | 0.840 3 | 86.4 | |
15 | 0.517 4 | 0.017 4 | 0.009 1 | 0.339 8 | 0.695 0 | 94.2 | |
30 | 20 | 0.522 9 | 0.022 9 | 0.013 9 | 0.307 5 | 0.738 3 | 93.4 |
25 | 0.550 0 | 0.050 0 | 0.030 6 | 0.259 3 | 0.840 7 | 86.5 |
Table 3
MLE of $\alpha $ for different $(n, m)$ "
Cover | |||||||
5 | 6.839 1 | 4.839 1 | 136.165 8 | 0 | 22.786 6 | 97.7 | |
10 | 7 | 8.408 2 | 6.408 2 | 1 335.444 0 | 0 | 31.100 1 | 96.4 |
9 | 3.238 4 | 1.238 4 | 0.828 1 | 0 | 6.931 6 | 96.8 | |
8 | 3.446 1 | 1.446 1 | 11.727 3 | 0 | 7.606 0 | 96.8 | |
16 | 10 | 2.872 2 | 0.872 2 | 0.559 0 | 0.143 9 | 5.600 6 | 96.9 |
14 | 2.585 3 | 0.585 3 | 0.201 9 | 0.446 1 | 4.724 5 | 96.4 | |
10 | 2.955 6 | 0.955 6 | 6.841 8 | 0 | 5.912 2 | 96.3 | |
20 | 15 | 2.474 6 | 0.474 6 | 0.159 8 | 0.598 9 | 4.350 4 | 96.2 |
18 | 2.524 3 | 0.524 3 | 0.155 8 | 0.690 4 | 4.358 2 | 97.5 | |
10 | 2.532 7 | 0.532 7 | 0.189 1 | 0.506 5 | 4.558 9 | 95.6 | |
25 | 15 | 2.437 8 | 0.437 8 | 0.142 7 | 0.701 2 | 4.174 4 | 96.5 |
20 | 2.398 6 | 0.398 6 | 0.111 2 | 0.820 1 | 3.977 0 | 96.2 | |
15 | 2.345 3 | 0.345 3 | 0.098 5 | 0.777 1 | 3.913 5 | 96.6 | |
30 | 20 | 2.363 4 | 0.363 4 | 0.094 0 | 0.887 2 | 3.839 6 | 97.1 |
25 | 2.257 9 | 0.257 9 | 0.063 4 | 0.938 1 | 3.577 7 | 95.7 |
Table 4
MLE of $\lambda $ for different $(n, m)$ "
Cover | |||||||
5 | 1.189 0 | 0.189 0 | 0.015 8 | 0.644 4 | 1.733 6 | 89.7 | |
10 | 7 | 1.136 3 | 0.136 3 | 0.009 6 | 0.691 7 | 1.580 9 | 90.4 |
9 | 1.101 3 | 0.101 3 | 0.006 0 | 0.719 1 | 1.483 6 | 91.4 | |
8 | 1.111 3 | 0.111 3 | 0.006 7 | 0.700 7 | 1.522 0 | 92.2 | |
16 | 10 | 1.088 8 | 0.088 8 | 0.004 9 | 0.728 5 | 1.449 2 | 93.4 |
14 | 1.051 1 | 0.051 1 | 0.002 6 | 0.754 1 | 1.348 0 | 94.6 | |
10 | 1.081 6 | 0.081 6 | 0.004 8 | 0.723 2 | 1.440 1 | 92.8 | |
20 | 15 | 1.052 2 | 0.052 2 | 0.002 7 | 0.764 7 | 1.339 7 | 93.7 |
18 | 1.050 4 | 0.050 4 | 0.002 3 | 0.788 5 | 1.312 2 | 92.7 | |
10 | 1.071 7 | 0.071 7 | 0.004 5 | 0.714 7 | 1.428 6 | 93.4 | |
25 | 15 | 1.050 8 | 0.050 8 | 0.002 7 | 0.764 7 | 1.336 9 | 93.1 |
20 | 1.044 0 | 0.044 0 | 0.001 9 | 0.796 6 | 1.291 5 | 93.3 | |
15 | 1.046 7 | 0.046 7 | 0.002 5 | 0.762 4 | 1.330 9 | 94.4 | |
30 | 20 | 1.047 3 | 0.047 3 | 0.002 0 | 0.800 8 | 1.293 9 | 93.8 |
25 | 1.027 0 | 0.027 0 | 0.001 4 | 0.807 4 | 1.246 7 | 93.9 |
Table 5
Bayesian estimation of $\alpha $ for different hyperparameters and different LFs"
var | SELF | GELF | |||||||||||
5 | 0.127 2 | 0.105 2 | 0.082 1 | 0.061 9 | 0.132 7 | 0.010 4 | 0.125 0 | 0.061 4 | 0.010 1 | ||||
10 | 7 | 0.055 8 | 0.097 2 | 0.078 9 | -0.012 4 | 0.107 9 | 0.010 0 | 0.000 6 | 0.086 5 | 0.009 6 | |||
9 | 0.148 7 | 0.166 7 | 0.078 8 | -0.064 1 | 0.101 4 | 0.009 9 | 0.022 0 | 0.097 1 | 0.009 4 | ||||
8 | 0.061 8 | 0.061 2 | 0.069 9 | 0.115 9 | 0.080 2 | 0.008 6 | 0.100 8 | 0.101 9 | 0.008 3 | ||||
16 | 10 | 0.267 4 | 0.204 7 | 0.068 0 | 0.067 2 | 0.053 1 | 0.008 4 | 0.141 4 | 0.181 9 | 0.008 5 | |||
14 | 0.016 7 | 0.143 7 | 0.065 8 | 0.119 0 | 0.179 2 | 0.008 3 | 0.197 2 | 0.121 8 | 0.007 9 | ||||
10 | 0.134 9 | 0.153 3 | 0.065 5 | 0.045 4 | 0.076 6 | 0.008 3 | 0.362 8 | 0.297 7 | 0.008 2 | ||||
0.5 | 20 | 15 | 0.258 9 | 0.125 5 | 0.061 3 | 0.065 2 | 0.100 9 | 0.007 4 | -0.209 4 | 0.112 5 | 0.007 3 | ||
18 | 0.093 8 | 0.110 3 | 0.060 9 | 0.253 7 | 0.192 6 | 0.007 4 | 0.112 3 | 0.090 1 | 0.007 2 | ||||
10 | 0.243 0 | 0.200 2 | 0.059 7 | -0.079 1 | 0.062 8 | 0.007 7 | 0.197 7 | 0.117 4 | 0.007 4 | ||||
25 | 15 | 0.142 6 | 0.171 9 | 0.057 5 | 0.146 6 | 0.126 7 | 0.007 2 | 0.043 9 | 0.119 0 | 0.007 1 | |||
20 | -0.019 1 | 0.081 0 | 0.053 1 | 0.109 3 | 0.113 5 | 0.006 8 | 0.193 4 | 0.135 7 | 0.006 8 | ||||
15 | 0.045 0 | 0.166 8 | 0.053 0 | -0.051 4 | 0.163 3 | 0.006 9 | 0.268 2 | 0.135 3 | 0.006 7 | ||||
30 | 20 | 0.016 2 | 0.088 6 | 0.048 4 | 0.163 6 | 0.169 5 | 0.006 3 | 0.247 3 | 0.148 8 | 0.006 4 | |||
25 | 0.481 9 | 0.316 9 | 0.050 9 | 0.110 1 | 0.136 4 | 0.005 9 | 0.146 0 | 0.080 4 | 0.005 9 | ||||
5 | 0.043 9 | 0.097 2 | 0.126 3 | 0.356 3 | 0.260 1 | 0.016 0 | 0.235 0 | 0.232 4 | 0.015 0 | ||||
10 | 7 | -0.097 9 | 0.084 7 | 0.116 1 | 0.151 2 | 0.213 7 | 0.015 5 | 0.159 7 | 0.188 5 | 0.014 7 | |||
9 | 0.045 3 | 0.299 2 | 0.114 2 | 0.200 8 | 0.261 4 | 0.014 5 | 0.108 3 | 0.351 3 | 0.014 0 | ||||
8 | 0.221 9 | 0.377 4 | 0.097 5 | 0.164 2 | 0.230 3 | 0.012 4 | 0.265 1 | 0.136 0 | 0.012 8 | ||||
16 | 10 | 0.101 5 | 0.111 1 | 0.095 4 | 0.184 4 | 0.190 4 | 0.012 3 | 0.158 3 | 0.198 8 | 0.011 8 | |||
14 | 0.366 0 | 0.497 4 | 0.088 5 | -0.047 1 | 0.148 4 | 0.010 7 | 0.056 2 | 0.314 4 | 0.011 1 | ||||
10 | 0.079 9 | 0.263 2 | 0.088 6 | 0.161 7 | 0.271 4 | 0.011 0 | 0.131 2 | 0.308 1 | 0.010 7 | ||||
1 | 20 | 15 | 0.111 8 | 0.105 3 | 0.082 1 | 0.406 6 | 0.376 4 | 0.011 2 | 0.385 2 | 0.428 1 | 0.010 2 | ||
18 | 0.111 5 | 0.209 3 | 0.074 9 | -0.200 5 | 0.099 9 | 0.009 1 | 0.144 9 | 0.249 5 | 0.009 4 | ||||
10 | 0.136 5 | 0.195 1 | 0.081 3 | 0.268 9 | 0.201 7 | 0.010 2 | 0.083 5 | 0.204 0 | 0.010 1 | ||||
25 | 15 | 0.107 9 | 0.068 5 | 0.072 8 | 0.001 2 | 0.122 0 | 0.009 4 | 0.238 5 | 0.242 2 | 0.009 0 | |||
20 | 0.117 9 | 0.160 5 | 0.070 0 | -0.047 4 | 0.145 6 | 0.008 5 | 0.274 7 | 0.248 5 | 0.008 2 | ||||
15 | 0.154 2 | 0.192 2 | 0.070 1 | 0.163 7 | 0.324 7 | 0.008 6 | 0.144 4 | 0.260 1 | 0.008 5 | ||||
30 | 20 | 0.245 4 | 0.250 9 | 0.066 3 | 0.262 3 | 0.320 4 | 0.008 2 | -0.005 1 | 0.209 9 | 0.007 8 | |||
25 | 0.168 1 | 0.136 5 | 0.058 9 | 0.273 2 | 0.204 2 | 0.007 6 | 0.077 1 | 0.125 8 | 0.007 2 | ||||
5 | 0.824 1 | 1.553 7 | 0.225 9 | 0.496 1 | 1.362 7 | 0.026 0 | 0.942 5 | 1.413 9 | 0.026 8 | ||||
10 | 7 | 0.542 7 | 1.130 9 | 0.197 2 | 0.561 2 | 0.679 5 | 0.025 2 | 1.277 5 | 3.009 3 | 0.025 7 | |||
9 | 0.086 3 | 0.644 4 | 0.171 1 | 0.452 6 | 0.508 9 | 0.023 5 | 0.677 4 | 2.119 2 | 0.023 7 | ||||
8 | 0.086 1 | 0.274 8 | 0.144 2 | 0.410 9 | 1.022 1 | 0.017 8 | 1.071 9 | 1.952 5 | 0.020 0 | ||||
16 | 10 | 0.581 7 | 1.259 1 | 0.139 7 | 1.158 4 | 2.892 1 | 0.019 5 | 1.064 4 | 2.583 8 | 0.018 1 | |||
14 | 0.438 0 | 0.636 9 | 0.127 4 | 0.067 6 | 0.307 8 | 0.015 4 | 0.339 3 | 0.403 7 | 0.015 7 | ||||
10 | 0.389 7 | 0.819 1 | 0.122 7 | 0.414 6 | 0.839 1 | 0.015 6 | 1.369 0 | 3.252 6 | 0.017 2 | ||||
4 | 20 | 15 | 0.509 8 | 1.055 4 | 0.114 9 | 0.651 6 | 1.493 7 | 0.014 1 | 0.500 3 | 1.260 5 | 0.014 1 | ||
18 | 0.416 3 | 0.517 7 | 0.104 4 | 0.329 5 | 0.705 8 | 0.013 5 | 0.552 0 | 0.691 9 | 0.013 1 | ||||
10 | 0.095 4 | 0.312 4 | 0.112 8 | -0.013 2 | 0.345 2 | 0.014 2 | 0.603 2 | 1.002 2 | 0.015 3 | ||||
25 | 15 | 0.023 8 | 0.165 9 | 0.092 9 | 0.047 9 | 0.405 5 | 0.011 8 | -0.069 9 | 0.089 3 | 0.011 6 | |||
20 | 0.123 0 | 0.414 2 | 0.086 2 | 0.036 8 | 0.203 9 | 0.011 1 | 0.518 9 | 0.637 7 | 0.011 2 | ||||
15 | 0.598 7 | 1.113 4 | 0.091 6 | 0.109 8 | 0.426 6 | 0.011 1 | 0.130 7 | 0.622 4 | 0.010 6 | ||||
30 | 20 | 0.451 7 | 0.784 0 | 0.084 4 | 0.673 8 | 2.460 7 | 0.010 5 | 0.575 9 | 0.864 8 | 0.010 4 | |||
25 | -0.053 8 | 0.156 7 | 0.070 2 | 0.552 6 | 0.572 0 | 0.009 4 | 0.547 8 | 0.765 6 | 0.009 8 |
Table 6
Bayesian estimation of $\lambda $ for different hyperparameters and different LFs"
var | SELF | GELF | |||||||||||
5 | 0.011 2 | 0.016 3 | 0.028 7 | 0.043 3 | 0.014 9 | 0.003 5 | 0.092 1 | 0.030 6 | 0.003 4 | ||||
10 | 7 | 0.111 5 | 0.078 8 | 0.022 7 | 0.069 4 | 0.015 9 | 0.002 8 | 0.092 1 | 0.018 7 | 0.002 7 | |||
9 | 0.034 9 | 0.008 1 | 0.017 7 | 0.031 1 | 0.031 8 | 0.002 4 | 0.034 8 | 0.012 1 | 0.002 3 | ||||
8 | 0.010 4 | 0.011 3 | 0.020 5 | 0.043 0 | 0.009 5 | 0.002 5 | 0.132 7 | 0.033 9 | 0.002 5 | ||||
16 | 10 | 0.074 8 | 0.011 9 | 0.016 0 | 0.050 6 | 0.017 7 | 0.002 2 | 0.118 4 | 0.025 7 | 0.002 1 | |||
14 | 0.030 5 | 0.009 0 | 0.014 0 | 0.013 4 | 0.004 2 | 0.001 7 | 0.096 9 | 0.013 9 | 0.001 6 | ||||
10 | 0.025 1 | 0.010 6 | 0.017 6 | 0.114 3 | 0.026 8 | 0.002 2 | 0.163 4 | 0.043 7 | 0.002 0 | ||||
0.5 | 20 | 15 | 0.052 7 | 0.012 1 | 0.012 1 | -0.003 6 | 0.003 8 | 0.001 6 | 0.027 7 | 0.002 2 | 0.001 8 | ||
18 | 0.041 2 | 0.009 8 | 0.011 2 | 0.132 5 | 0.021 5 | 0.001 3 | 0.060 3 | 0.009 9 | 0.001 3 | ||||
10 | -0.005 9 | 0.011 8 | 0.016 9 | 0.028 1 | 0.034 8 | 0.002 5 | 0.071 4 | 0.015 7 | 0.002 2 | ||||
25 | 15 | 0.039 6 | 0.005 0 | 0.013 3 | 0.000 3 | 0.005 2 | 0.001 5 | 0.018 4 | 0.002 7 | 0.001 7 | |||
20 | -0.023 0 | 0.006 7 | 0.010 9 | 0.008 7 | 0.007 5 | 0.001 3 | 0.054 5 | 0.009 4 | 0.001 3 | ||||
15 | 0.006 0 | 0.009 6 | 0.013 7 | 0.026 3 | 0.010 2 | 0.001 8 | 0.046 6 | 0.016 6 | 0.001 6 | ||||
30 | 20 | 0.038 0 | 0.007 9 | 0.010 1 | 0.018 0 | 0.007 5 | 0.001 2 | 0.066 0 | 0.017 7 | 0.001 3 | |||
25 | 0.050 7 | 0.010 1 | 0.008 1 | 0.033 7 | 0.007 4 | 0.001 1 | 0.058 8 | 0.005 3 | 0.001 1 | ||||
5 | 0.037 6 | 0.026 1 | 0.030 7 | 0.160 7 | 0.058 5 | 0.003 8 | 0.149 3 | 0.056 4 | 0.003 8 | ||||
10 | 7 | 0.004 5 | 0.008 8 | 0.026 5 | 0.072 6 | 0.014 7 | 0.003 1 | 0.101 0 | 0.021 3 | 0.003 1 | |||
9 | 0.088 0 | 0.032 7 | 0.021 6 | 0.062 7 | 0.035 8 | 0.002 4 | 0.063 1 | 0.023 7 | 0.002 7 | ||||
8 | 0.104 0 | 0.026 1 | 0.023 3 | 0.063 3 | 0.034 2 | 0.003 0 | 0.071 7 | 0.016 4 | 0.002 8 | ||||
16 | 10 | 0.100 6 | 0.017 8 | 0.020 1 | 0.117 3 | 0.029 9 | 0.002 4 | 0.038 0 | 0.017 0 | 0.002 5 | |||
14 | 0.030 9 | 0.008 0 | 0.014 3 | 0.046 3 | 0.015 2 | 0.001 9 | 0.029 8 | 0.019 4 | 0.001 9 | ||||
10 | 0.002 7 | 0.010 6 | 0.020 9 | 0.075 3 | 0.010 3 | 0.002 5 | 0.018 7 | 0.017 9 | 0.002 5 | ||||
1 | 20 | 15 | 0.076 1 | 0.015 8 | 0.014 2 | 0.046 1 | 0.009 5 | 0.001 8 | 0.066 0 | 0.016 9 | 0.001 8 | ||
18 | 0.037 7 | 0.012 2 | 0.012 3 | 0.010 0 | 0.013 1 | 0.001 7 | 0.029 9 | 0.013 9 | 0.001 6 | ||||
10 | 0.099 2 | 0.026 4 | 0.020 3 | -0.015 7 | 0.003 2 | 0.002 5 | 0.055 8 | 0.017 5 | 0.002 6 | ||||
25 | 15 | 0.046 5 | 0.012 2 | 0.014 3 | -0.016 6 | 0.013 1 | 0.001 9 | 0.028 8 | 0.006 3 | 0.001 7 | |||
20 | -0.017 4 | 0.007 8 | 0.011 8 | -0.026 6 | 0.008 0 | 0.001 5 | 0.028 5 | 0.010 4 | 0.001 3 | ||||
15 | 0.018 6 | 0.020 9 | 0.015 3 | 0.074 4 | 0.015 1 | 0.001 9 | -0.017 1 | 0.007 6 | 0.001 9 | ||||
30 | 20 | 0.055 9 | 0.009 8 | 0.011 6 | 0.032 7 | 0.022 3 | 0.001 5 | 0.010 2 | 0.009 4 | 0.001 5 | |||
25 | 0.068 2 | 0.009 4 | 0.009 4 | 0.084 1 | 0.014 9 | 0.001 2 | 0.057 1 | 0.006 3 | 0.001 2 | ||||
5 | 0.194 0 | 0.078 1 | 0.035 3 | 0.142 5 | 0.040 9 | 0.004 6 | 0.296 9 | 0.121 0 | 0.004 3 | ||||
10 | 7 | 0.142 5 | 0.079 5 | 0.029 2 | 0.109 2 | 0.052 0 | 0.003 4 | 0.125 3 | 0.061 3 | 0.003 2 | |||
9 | 0.037 6 | 0.028 9 | 0.026 2 | 0.095 7 | 0.023 4 | 0.003 1 | 0.109 1 | 0.029 7 | 0.003 1 | ||||
8 | 0.044 1 | 0.047 2 | 0.028 6 | 0.103 5 | 0.039 6 | 0.003 3 | 0.156 3 | 0.044 1 | 0.003 0 | ||||
16 | 10 | 0.053 8 | 0.032 1 | 0.021 2 | 0.176 1 | 0.070 2 | 0.002 6 | 0.170 7 | 0.053 5 | 0.002 5 | |||
14 | 0.084 2 | 0.024 4 | 0.017 2 | 0.035 1 | 0.014 6 | 0.002 2 | 0.122 1 | 0.038 9 | 0.002 2 | ||||
10 | 0.091 0 | 0.047 7 | 0.022 8 | 0.067 2 | 0.034 2 | 0.002 8 | 0.076 2 | 0.017 5 | 0.002 5 | ||||
4 | 20 | 15 | 0.087 8 | 0.018 5 | 0.016 3 | 0.081 1 | 0.018 2 | 0.001 9 | 0.148 9 | 0.048 8 | 0.002 1 | ||
18 | 0.062 8 | 0.024 8 | 0.013 6 | 0.027 0 | 0.019 0 | 0.001 8 | 0.079 2 | 0.014 4 | 0.001 7 | ||||
10 | 0.024 5 | 0.012 4 | 0.024 8 | 0.115 0 | 0.042 2 | 0.003 2 | 0.192 4 | 0.103 6 | 0.002 9 | ||||
25 | 15 | -0.022 6 | 0.006 1 | 0.017 3 | 0.034 1 | 0.018 3 | 0.002 1 | 0.010 7 | 0.001 6 | 0.002 2 | |||
20 | 0.038 7 | 0.017 0 | 0.013 1 | 0.014 6 | 0.005 3 | 0.001 7 | 0.068 1 | 0.029 0 | 0.001 5 | ||||
15 | 0.091 8 | 0.044 3 | 0.014 8 | 0.028 2 | 0.007 6 | 0.002 1 | 0.028 2 | 0.038 0 | 0.002 1 | ||||
30 | 20 | 0.035 3 | 0.016 8 | 0.012 2 | 0.070 6 | 0.025 9 | 0.001 5 | 0.095 1 | 0.019 0 | 0.001 5 | |||
25 | 0.062 5 | 0.012 4 | 0.011 2 | 0.058 6 | 0.006 2 | 0.001 2 | 0.056 8 | 0.015 3 | 0.001 3 |
Table 7
Bayesian estimation of $p$ for different hyperparameters and different LFs"
SELF | GELF | |||||||||||
5 | 0.032 5 | 0.024 6 | 0.480 0 | 0.034 5 | 0.012 9 | 0.011 0 | 0.009 8 | 0.018 9 | 0.012 7 | |||
10 | 7 | 0.102 0 | 0.051 2 | 1.007 9 | 0.007 9 | 0.019 7 | 0.017 1 | 0.006 7 | 0.017 2 | 0.016 4 | ||
9 | 0.052 3 | 0.055 9 | 1.750 3 | -0.063 5 | 0.022 1 | 0.047 5 | -0.006 1 | 0.018 4 | 0.037 4 | |||
8 | 0.044 9 | 0.007 4 | 0.260 9 | -0.042 1 | 0.012 0 | 0.008 4 | -0.006 7 | 0.014 9 | 0.007 3 | |||
16 | 10 | 0.009 1 | 0.015 8 | 0.339 6 | 0.060 4 | 0.019 6 | 0.008 4 | -0.006 3 | 0.020 4 | 0.009 6 | ||
14 | 0.110 9 | 0.039 0 | 1.252 7 | -0.012 8 | 0.009 7 | 0.027 8 | 0.037 8 | 0.016 5 | 0.021 5 | |||
10 | -0.012 1 | 0.005 0 | 0.192 7 | 0.000 1 | 0.019 2 | 0.005 9 | 0.041 0 | 0.021 5 | 0.005 5 | |||
20 | 15 | 0.007 8 | 0.023 0 | 0.409 8 | 0.027 1 | 0.046 2 | 0.011 3 | -0.039 7 | 0.014 3 | 0.011 9 | ||
18 | 0.084 6 | 0.018 8 | 1.041 7 | -0.102 4 | 0.021 9 | 0.032 3 | -0.015 2 | 0.015 6 | 0.024 7 | |||
10 | 0.007 9 | 0.008 1 | 0.133 8 | 0.007 1 | 0.006 9 | 0.004 0 | 0.010 0 | 0.008 0 | 0.003 9 | |||
25 | 15 | 0.005 9 | 0.013 2 | 0.204 8 | -0.031 7 | 0.003 1 | 0.006 3 | -0.014 1 | 0.012 0 | 0.006 0 | ||
20 | -0.029 4 | 0.013 9 | 0.371 1 | -0.072 8 | 0.013 1 | 0.012 7 | 0.097 4 | 0.021 1 | 0.009 3 | |||
15 | 0.004 0 | 0.013 9 | 0.138 6 | 0.014 6 | 0.006 1 | 0.003 9 | -0.022 5 | 0.006 9 | 0.004 2 | |||
30 | 20 | 0.035 3 | 0.010 2 | 0.215 4 | 0.023 2 | 0.006 0 | 0.005 5 | 0.050 2 | 0.012 8 | 0.005 4 | ||
25 | 0.092 5 | 0.033 3 | 0.593 0 | 0.070 2 | 0.027 8 | 0.010 2 | -0.008 0 | 0.007 8 | 0.011 2 |
Table 8
Bayesian credible intervals of $\alpha $ and $\lambda $ for different $(n, m)$ "
5 | (0.892 6, 2.316 5) | (0.901 2, 2.305 5) | (0.896 1, 2.568 1) | (0.904 8, 2.382 1) | ||
10 | 7 | (0.953 1, 2.718 1) | (1.023 3, 2.678 9) | (0.961 8, 2.710 4) | (0.991 8, 2.103 9) | |
9 | (0.800 9, 2.180 3) | (0.953 2, 2.085 2) | (0.800 9, 2.180 3) | (0.833 7, 2.032 3) | ||
8 | (0.948 2, 2.244 6) | (0.956 7, 2.143 5) | (1.005 1, 2.252 7) | (1.014 2, 1.997 6) | ||
16 | 10 | (0.937 5, 2.312 6) | (0.958 9, 2.248 8) | (0.937 5, 2.312 6) | (1.092 5, 2.297 3) | |
14 | (0.983 5, 2.314 3) | (1.010 0, 2.167 8) | (0.983 5, 2.314 3) | (0.997 6, 2.145 9) | ||
10 | (0.918 1, 2.252 5) | (0.953 4, 2.148 6) | (0.849 2, 2.238 2) | (0.903 7, 2.134 6) | ||
20 | 15 | (0.858 5, 2.376 0) | (0.907 8, 2.267 3) | (0.855 9, 2.360 4) | (0.897 6, 2.287 7) | |
18 | (1.019 5, 2.231 5) | (1.101 0, 2.134 2) | (0.990 4, 2.292 1) | (1.124 3, 2.136 2) | ||
10 | (0.898 1, 2.269 2) | (0.935 2, 2.187 3) | (0.897 7, 2.294 1) | (0.957 0, 2.190 8) | ||
25 | 15 | (0.897 6, 2.182 6) | (0.943 2, 2.040 8) | (0.854 6, 2.179 8) | (0.904 5, 2.090 3) | |
20 | (0.818 4, 1.929 9) | (0.858 1, 1.918 4) | (0.818 4, 1.929 9) | (0.836 2, 1.910 0) | ||
15 | (0.838 2, 2.067 2) | (0.865 8, 2.078 3) | (0.838 2, 2.067 2) | (0.873 6, 1.998 7) | ||
30 | 20 | (0.961 1, 2.012 2) | (0.987 7, 2.135 2) | (0.931 1, 1.936 1) | (0.971 1, 1.942 1) | |
25 | (0.989 5, 2.863 6) | (1.032 4, 2.659 1) | (0.917 3, 2.755 3) | (0.932 8, 2.487 3) |
Table 9
Bayesian credible intervals of $p$ for different $(n, m)$ "
5 | (0.473 3, 0.701 5) | (0.483 9, 0.692 8) | |
10 | 7 | (0.481 7, 0.712 8) | (0.502 3, 0.703 5) |
9 | (0.407 6, 0.695 7) | (0.456 0, 0.672 9) | |
8 | (0.498 8, 0.680 5) | (0.502 2, 0.673 4) | |
16 | 10 | (0.477 6, 0.690 5) | (0.493 8, 0.663 7) |
14 | (0.490 4, 0.680 3) | (0.498 7, 0.672 5) | |
10 | (0.455 1, 0.663 9) | (0.452 1, 0.652 2) | |
20 | 15 | (0.456 1, 0.686 8) | (0.473 0, 0.673 8) |
18 | (0.487 9, 0.681 0) | (0.497 2, 0.670 1) | |
10 | (0.465 8, 0.659 8) | (0.478 1, 0.653 2) | |
25 | 15 | (0.460 3, 0.673 0) | (0.492 0, 0.672 9) |
20 | (0.425 4, 0.652 4) | (0.460 0, 0.662 0) | |
15 | (0.451 0, 0.657 6) | (0.467 2, 0.657 9) | |
30 | 20 | (0.488 2, 0.660 0) | (0.493 6, 0.668 4) |
25 | (0.468 0, 0.704 9) | (0.472 9, 0.698 9) |
Table 10
Bayesian estimate of reliability characteristics"
5 | 0.592 0 | 1.765 1 | 0.059 8 | 8.696 4 | ||
10 | 7 | 0.516 5 | 1.844 3 | 0.045 0 | 4.023 8 | |
9 | 0.578 4 | 2.099 6 | 0.048 8 | 9.911 5 | ||
8 | 0.588 5 | 1.550 2 | 0.026 6 | 4.260 1 | ||
16 | 10 | 0.562 8 | 1.711 6 | 0.025 9 | 5.283 3 | |
14 | 0.564 0 | 1.661 5 | 0.038 9 | 5.097 4 | ||
10 | 0.585 7 | 1.688 0 | 0.030 9 | 4.234 1 | ||
20 | 15 | 0.585 8 | 1.658 6 | 0.040 3 | 5.780 7 | |
18 | 0.568 7 | 1.676 8 | 0.033 6 | 5.609 2 | ||
10 | 0.630 3 | 1.569 9 | 0.032 4 | 5.711 7 | ||
25 | 15 | 0.575 8 | 1.559 3 | 0.034 5 | 4.591 1 | |
20 | 0.607 7 | 1.534 1 | 0.034 5 | 5.665 0 | ||
15 | 0.585 9 | 1.548 0 | 0.034 3 | 5.816 5 | ||
30 | 20 | 0.559 1 | 1.673 1 | 0.043 6 | 4.720 8 | |
25 | 0.622 6 | 1.721 3 | 0.047 0 | 5.239 8 |
Table 12
Random removal schemes"
Scheme number | ||
1 | 0.05 | (0 0 0 1 0 0 2 1 0 0 0 7) |
2 | 0.1 | (2 1 1 0 1 0 0 0 2 0 0 4) |
3 | 0.2 | (0 1 1 3 2 0 1 2 0 1 0 0) |
4 | 0.3 | (0 5 2 0 3 0 1 0 0 0 0 0) |
5 | 0.4 | (1 2 3 4 1 0 0 0 0 0 0 0) |
6 | 0.5 | (6 2 2 1 0 0 0 0 0 0 0 0) |
7 | 0.6 | (6 5 0 0 0 0 0 0 0 0 0 0) |
8 | 0.7 | (10 0 1 0 0 0 0 0 0 0 0 0) |
9 | 0.8 | (10 1 0 0 0 0 0 0 0 0 0 0) |
10 | 0.9 | (11 0 0 0 0 0 0 0 0 0 0 0) |
Table 13
MLE of $\alpha $ for ball bearing data under different schemes"
Scheme number | MSE | ||||
1 | 1.305 1 | 0.106 7 | 0.011 4 | 0.387 3 | 2.222 8 |
2 | 1.422 8 | 0.224 5 | 0.050 4 | 0.435 0 | 2.410 7 |
3 | 1.159 1 | -0.039 2 | 0.001 5 | 0.430 1 | 1.888 1 |
4 | 1.269 6 | 0.071 3 | 0.005 1 | 0.464 2 | 2.075 0 |
5 | 1.281 0 | 0.082 6 | 0.006 8 | 0.487 9 | 2.074 1 |
6 | 1.540 0 | 0.341 7 | 0.116 7 | 0.490 3 | 2.589 7 |
7 | 1.636 4 | 0.438 1 | 0.191 9 | 0.516 9 | 2.755 9 |
8 | 1.622 2 | 0.423 8 | 0.179 6 | 0.458 3 | 2.786 0 |
9 | 1.622 1 | 0.423 8 | 0.179 6 | 0.458 4 | 2.785 8 |
10 | 1.583 2 | 0.384 8 | 0.148 1 | 0.442 3 | 2.724 0 |
Table 14
MLE of λ for ball bearing data under different schemes"
Scheme number | MSE | ||||
1 | 0.012 8 | -0.000 2 | 6.19E-08 | 0.007 6 | 0.018 1 |
2 | 0.011 9 | -0.001 2 | 1.39E-06 | 0.007 5 | 0.016 3 |
3 | 0.010 0 | -0.003 1 | 9.52E-06 | 0.006 2 | 0.013 8 |
4 | 0.010 0 | -0.003 1 | 9.52E-06 | 0.006 4 | 0.013 6 |
5 | 0.010 3 | -0.002 8 | 7.82E-06 | 0.006 7 | 0.013 9 |
6 | 0.010 8 | -0.002 3 | 5.27E-06 | 0.007 2 | 0.014 3 |
7 | 0.011 1 | -0.002 0 | 3.87E-06 | 0.007 6 | 0.014 6 |
8 | 0.011 2 | -0.001 9 | 3.68E-06 | 0.007 7 | 0.014 7 |
9 | 0.011 2 | -0.001 9 | 3.66E-06 | 0.007 7 | 0.014 7 |
10 | 0.011 2 | -0.001 9 | 3.50E-06 | 0.007 7 | 0.014 7 |
Table 15
Bayesian estimation of $ \alpha $ for ball bearing data under different schemes"
Scheme number | SELF | GELF | GELF | |||||
MSE | MSE | MSE | ||||||
1 | 1.336 9 | 0.019 3 | 1.305 0 | 0.011 7 | 1.362 2 | 0.027 2 | ||
2 | 1.408 6 | 0.044 4 | 1.382 9 | 0.034 2 | 1.434 9 | 0.056 2 | ||
3 | 1.206 7 | 0.000 1 | 1.195 7 | 0.000 1 | 1.227 1 | 0.001 0 | ||
4 | 1.310 8 | 0.012 7 | 1.284 6 | 0.007 6 | 1.333 7 | 0.018 5 | ||
5 | 1.351 5 | 0.023 5 | 1.322 3 | 0.015 7 | 1.367 4 | 0.028 7 | ||
6 | 1.498 4 | 0.090 3 | 1.465 2 | 0.071 5 | 1.521 4 | 0.104 6 | ||
7 | 1.527 9 | 0.108 8 | 1.500 2 | 0.091 3 | 1.571 9 | 0.139 6 | ||
8 | 1.521 3 | 0.104 7 | 1.476 7 | 0.077 7 | 1.551 5 | 0.125 0 | ||
9 | 1.512 1 | 0.098 7 | 1.488 7 | 0.084 6 | 1.551 6 | 0.125 1 | ||
10 | 1.486 6 | 0.083 3 | 1.457 4 | 0.067 5 | 1.514 6 | 0.100 1 |
Table 16
Bayesian estimation of $\lambda $ for ball bearing data under different schemes"
Scheme number | SELF | GELF | GELF | |||||
MSE | MSE | MSE | ||||||
1 | 0.013 2 | 3.32E-08 | 0.013 1 | 1.14E-08 | 0.013 4 | 8.06E-08 | ||
2 | 0.012 1 | 9.34E-07 | 0.012 0 | 1.17E-06 | 0.012 2 | 7.89E-07 | ||
3 | 0.010 4 | 6.98E-06 | 0.010 4 | 7.07E-06 | 0.010 5 | 6.52E-06 | ||
4 | 0.010 4 | 7.00E-06 | 0.010 4 | 7.26E-06 | 0.010 5 | 6.45E-06 | ||
5 | 0.010 8 | 5.22E-06 | 0.010 7 | 5.72E-06 | 0.010 8 | 5.24E-06 | ||
6 | 0.011 0 | 4.18E-06 | 0.011 0 | 4.39E-06 | 0.011 1 | 4.00E-06 | ||
7 | 0.011 1 | 3.84E-06 | 0.011 1 | 4.00E-06 | 0.011 2 | 3.49E-06 | ||
8 | 0.011 2 | 3.41E-06 | 0.011 2 | 3.71E-06 | 0.011 3 | 3.28E-06 | ||
9 | 0.011 2 | 3.49E-06 | 0.011 2 | 3.68E-06 | 0.011 3 | 3.20E-06 | ||
10 | 0.011 3 | 3.24E-06 | 0.011 2 | 3.49E-06 | 0.011 3 | 3.05E-06 |
1 | ALI MOUSA M A M, AL-SAGHEER S A. Statistical inference for the Rayleigh model based on progressively Type-Ⅱ censored data. Statistics, 2006, 40 (2): 149- 157. |
2 |
CHIEN T L, WU S S, BALAKRISHNAN N. Inference for Log-Gamma distribution based on progressively Type-Ⅱ censored data. Communications in Statistics, 2006, 35 (7): 1271- 1292.
doi: 10.1080/03610920600692789 |
3 | SINGH S K, SINGH U, YADAV A S, et al. Bayesian reliability estimation of inverted exponential distribution under progressive Type-Ⅱ censored data. Journal of Statistics Applications and Probability, 2014, 3 (3): 317- 333. |
4 |
DEY S, KAYAL T, TRIPATHI Y M. Statistical inference for the weighted exponential distribution under progressive Type-Ⅱ censoring with binomial removal. American Journal of Mathematical and Management Sciences, 2018, 37 (2): 188- 208.
doi: 10.1080/01966324.2017.1395375 |
5 |
YAN W, SHI Y, SONG B, et al. Statistical analysis of generalized exponential distribution under progressive censoring with binomial removals. Journal of Systems Engineering and Electronics, 2011, 22 (4): 707- 714.
doi: 10.3969/j.issn.1004-4132.2011.04.022 |
6 | DEY S, DEY T. Statistical inference for the Rayleigh distribution under progressively Type-Ⅱ censoring with binomial removal. Applied Mathematical Modelling, 2014, 38 (3): 974- 982. |
7 | SINGH S K, SINGH U, KUMAR M. Estimation of parameters of generalized inverted exponential distribution for progressive Type-Ⅱ censored sample with binomial removals. Journal of Probability and Statistics, 2013, 2013, 1- 12. |
8 |
SINGH S K, SINGH U, KUMAR M. Bayesian estimation for Poisson-exponential model under progressive Type-Ⅱ censoring data with binomial removal and its application to ovarian cancer data. Communications in Statistics——Simulation and Computation, 2016, 45 (9): 3457- 3475.
doi: 10.1080/03610918.2014.948189 |
9 | AZIMI R, YAGHMAEI F. Bayesian estimation based on Rayleigh progressive Type Ⅱ censored data with binomial removals. Journal of Quality and Reliability Engineering, 2013, 2013, 1- 6. |
10 | YUEN H K, TSE S K. Parameters estimation for Weibull distributed lifetimes under progressive censoring with random removals. Journal of Statistical Computation and Simulation, 1996, 55 (1/2): 57- 71. |
11 |
TSE S K, YUEN H K. Expected experiment times for the Weibull distribution under progressive censoring with random removals. Journal of Applied Statistics, 1998, 25 (1): 75- 83.
doi: 10.1080/02664769823313 |
12 | WU S J, CHANG C T. Parameter estimations based on exponential progressive Type Ⅱ censored data with binomial removals. International Journal of Information and Management Sciences, 2002, 13 (3): 37- 46. |
13 |
WU S J, CHANG C T. Inference in the Pareto distribution based on progressive Type Ⅱ censoring with random removals. Journal of Applied Statistics, 2003, 30 (2): 163- 172.
doi: 10.1080/0266476022000023721 |
14 |
WU S J, CHEN Y J, CHANG C T. Statistical inference based on progressively censored samples with random removals from the Burr type Ⅻ distribution. Journal of Statistical Computation and Simulation, 2007, 77 (1): 19- 27.
doi: 10.1080/10629360600569204 |
15 |
SURLES J G, PADGETT W J. Some properties of a scaled Burr type X distribution. Journal of Statistical Planning and Inference, 2005, 128 (1): 271- 280.
doi: 10.1016/j.jspi.2003.10.003 |
16 | ASLAM M. Economic reliability acceptance sampling plan for generalized Rayleigh distribution. Journal of Statistics, 2008, 15 (1): 26- 35. |
17 |
MEINTANIS S G. A new approach of goodness-of-fit testing for exponentiated laws applied to the generalized Rayleigh distribution. Computational Statistics and Data Analysis, 2008, 52 (5): 2496- 2503.
doi: 10.1016/j.csda.2007.08.014 |
18 | POLOVKO A M. Fundamentals of reliability theory. New York: Academic Press, 1968. |
19 | RAQAB M Z, KUNDU D. Burr type X distribution: revisited. Journal of Probability and Statistical Sciences, 2006, 4 (2): 179- 193. |
20 | SURLES J G, PADGETT W J. Inference for reliability and stress-strength for a scaled Burr type X distribution. Lifetime Data Analysis, 2001, 7 (2): 187- 200. |
21 | LAWLESS J F. Statistical models and methods for lifetime data. New York: John Wiley and Sons, 1982. |
22 | BALAKRISHNAN N, SANDHU R A. A simple simulational algorithm for generating progressive type-ⅱ censored samples. The American Statistician, 1995, 49 (2): 229- 230. |
23 |
LIEBLEIN J, ZELEN M. Statistical investigation of the fatigue life of deep-groove ball bearings. Journal of Research of the National Bureau of Standards, 1956, 57 (5): 273- 315.
doi: 10.6028/jres.057.033 |
24 | BALAKRISHNAN N, AGGARWALA R. Progressive censoring: theory, methods, and applications. Boston: Birkhauser, 2000. |
[1] | Liang Wang and Yimin Shi . Estimation for constant-stress accelerated life test from generalized half-normal distribution [J]. Systems Engineering and Electronics, 2017, 28(4): 810-. |
[2] | Jiao Zhao, Yimin Shi, and Weian Yan. Inference for constant-stress accelerated life test with Type-I progressively hybrid censored data from Burr-XII distribution [J]. Journal of Systems Engineering and Electronics, 2014, 25(2): 340-348. |
[3] | Jing Liu, Xiaowei Cui, Mingquan Lu, and Zhenming Feng. Vector tracking loops in GNSS receivers for dynamic weak signals [J]. Journal of Systems Engineering and Electronics, 2013, 24(3): 349-. |
[4] | Yanhua Peng, Bin Tang, and Ming Lü. Fast method for spreading sequence estimation of DSSS signal based on maximum likelihood function [J]. Journal of Systems Engineering and Electronics, 2010, 21(6): 948-953. |
[5] | Hou Yuguan, Shen Yiying & Zhang Zhongzhao. Elevation estimation for low-angle target based on reflection paths suppression [J]. Journal of Systems Engineering and Electronics, 2008, 19(1): 71-75. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||