Journal of Systems Engineering and Electronics ›› 2020, Vol. 31 ›› Issue (1): 185-193.doi: 10.21629/JSEE.2020.01.18
• Control Theory and Application • Previous Articles Next Articles
Hongwei WANG1,2,*(), Yuxiao CHEN1()
Received:
2019-04-08
Online:
2020-02-20
Published:
2020-02-25
Contact:
Hongwei WANG
E-mail:1195201627@qq.com;cyxling@126.com
About author:
WANG Hongwei was born in 1969. He is a Ph.D. and a professor. He is sent to help Xinjiang University by Dalian University of Technology. His research interests are switched system identification, nonlinear system identification and fuzzy modeling. E-mail: Supported by:
Hongwei WANG, Yuxiao CHEN. Parameter estimation for dual-rate sampled Hammerstein systems with dead-zone nonlinearity[J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 185-193.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Estimated parameters and errors by the proposed algorithm ${(\sigma ^2 = 0.1^2, \delta _{ns} = 13.135 3\%)}$ "
100 | 0.398 1 | 0.304 7 | 0.523 9 | 0.618 7 | 0.443 5 | 0.154 9 | 0.729 1 | -0.240 1 | 0.474 1 | 0.922 5 | 15.479 9 |
1 000 | 0.399 4 | 0.302 1 | 0.498 4 | 0.601 4 | 0.499 5 | 0.206 7 | 0.701 4 | -0.221 0 | 0.519 0 | 0.802 2 | 6.729 3 |
2 000 | 0.399 2 | 0.302 2 | 0.501 6 | 0.603 3 | 0.501 2 | 0.202 2 | 0.708 3 | -0.221 3 | 0.509 3 | 0.774 3 | 4.902 4 |
3 000 | 0.398 9 | 0.302 8 | 0.503 8 | 0.607 5 | 0.500 7 | 0.201 4 | 0.708 0 | -0.220 5 | 0.504 1 | 0.765 0 | 4.307 0 |
4 000 | 0.398 7 | 0.303 1 | 0.503 9 | 0.605 9 | 0.502 4 | 0.202 2 | 0.703 9 | -0.217 4 | 0.501 7 | 0.749 2 | 3.252 7 |
5 000 | 0.398 8 | 0.303 0 | 0.500 8 | 0.604 7 | 0.501 0 | 0.200 8 | 0.704 3 | -0.216 0 | 0.502 0 | 0.727 4 | 1.867 5 |
True value | 0.400 | 0.300 | 0.500 | 0.600 | 0.500 | 0.200 | 0.700 | -0.210 | 0.500 | 0.700 | 0.000 0 |
Table 2
Estimated parameters and errors by the proposed algorithm ${(\sigma ^2 = 0.15^2, \delta _{ns} = 32.403 8\%)}$ "
100 | 0.365 6 | 0.331 4 | 0.467 0 | 0.636 8 | 0.436 1 | 0.127 6 | 0.695 9 | -0.206 5 | 0.303 0 | 0.612 2 | 15.795 9 |
1 000 | 0.461 2 | 0.298 6 | 0.548 9 | 0.600 8 | 0.489 9 | 0.191 9 | 0.712 1 | -0.220 9 | 0.395 0 | 0.739 5 | 8.886 2 |
2 000 | 0.445 4 | 0.298 6 | 0.533 4 | 0.602 5 | 0.509 8 | 0.219 4 | 0.711 4 | -0.216 1 | 0.528 0 | 0.670 2 | 4.760 6 |
3 000 | 0.442 5 | 0.302 9 | 0.522 5 | 0.609 8 | 0.501 0 | 0.205 6 | 0.709 2 | -0.211 5 | 0.505 1 | 0.642 6 | 4.916 1 |
4 000 | 0.426 9 | 0.297 0 | 0.514 4 | 0.600 5 | 0.501 0 | 0.203 5 | 0.700 8 | -0.205 3 | 0.505 9 | 0.655 0 | 3.541 0 |
5 000 | 0.425 7 | 0.292 9 | 0.515 8 | 0.598 4 | 0.504 1 | 0.207 0 | 0.705 6 | -0.211 8 | 0.524 7 | 0.702 5 | 2.633 0 |
True value | 0.400 | 0.300 | 0.500 | 0.600 | 0.500 | 0.200 | 0.700 | -0.210 | 0.500 | 0.700 | 0.000 0 |
Table 3
Estimated parameters and errors by the proposed algorithm ${(\sigma ^2 = 0.25^2, \delta _{ns} = 54.768 8\%)}$ "
100 | 0.544 6 | 0.292 3 | 0.601 4 | 0.688 0 | 0.480 4 | 0.243 6 | 0.712 4 | -0.217 1 | 0.639 9 | 0.594 3 | 17.263 2 |
1 000 | 0.402 2 | 0.263 8 | 0.494 6 | 0.574 9 | 0.494 3 | 0.185 2 | 0.685 3 | -0.213 5 | 0.363 1 | 0.567 7 | 12.632 8 |
2 000 | 0.399 1 | 0.282 3 | 0.480 7 | 0.580 4 | 0.514 7 | 0.224 0 | 0.699 8 | -0.214 7 | 0.561 8 | 0.554 6 | 10.523 0 |
3 000 | 0.395 8 | 0.277 9 | 0.476 3 | 0.575 5 | 0.506 1 | 0.219 2 | 0.699 0 | -0.211 6 | 0.533 8 | 0.567 8 | 9.239 7 |
4 000 | 0.422 1 | 0.294 2 | 0.508 6 | 0.595 5 | 0.509 9 | 0.220 1 | 0.699 6 | -0.210 2 | 0.524 1 | 0.606 0 | 6.594 0 |
5 000 | 0.410 3 | 0.282 7 | 0.494 3 | 0.580 2 | 0.505 9 | 0.214 5 | 0.701 4 | -0.216 1 | 0.510 8 | 0.621 3 | 5.535 2 |
True value | 0.400 | 0.300 | 0.500 | 0.600 | 0.500 | 0.200 | 0.700 | -0.210 | 0.500 | 0.700 | 0.000 0 |
1 |
DING F, QIU L, CHEN T W. Reconstruction of continuous-time systems from their nonuniformly sampled discrete-time systems. Automatica, 2009, 45 (2): 324- 332.
doi: 10.1016/j.automatica.2008.08.007 |
2 | WANG H W, XIA H. Fuzzy identification for nonuniformly multi-rate sampled nonlinear systems. Control and Decision, 2015, 30 (9): 1646- 1652. |
3 | LIU R R, PAN T H, LI Z M. Hierarchical stochastic gradient identification for Hammerstein-Wiener systems with non-uniformly sampling. Control and Decision, 2015, 30 (8): 1491- 1496. |
4 |
MIZUMOTO I, CHEN T W, OHDAIRA S, et al. Adaptive output feedback control of general MIMO systems using multirate sampling and its application to a cart-crane system. Automatica, 2007, 43 (12): 2077- 2085.
doi: 10.1016/j.automatica.2007.04.017 |
5 |
DING F, LIU P X, YANG H Z. Parameter identification and intersample output estimation for dual-rate systems. Part A-Systems and Humans, 2008, 38 (4): 966- 975.
doi: 10.1109/TSMCA.2008.923030 |
6 | DING F, CHEN T W, XIAO D Y. Identification of non-uniformly periodically sampled multirate systems. Acta Electronica Sinica, 2004, 32 (9): 1414- 1420. |
7 | XIE L, DING F. Identification method for non-uniformly sampled-data systems. Control Engineering of China, 2008, 15 (4): 402- 404, 460. |
8 | DING F, CHEN T W, XIAO D Y. State-space modeling and identification of general dual-rate stochastic systems. Acta Automatica Sinica, 2004, 30 (5): 652- 663. |
9 | DING J, DING F. The residual based extended least squares identification method for dual-rate systems. Computers & Mathematics with Applications, 2008, 56 (6): 1479- 1487. |
10 |
DING F, CHEN T W. Combined parameter and output estimation of dual-rate systems using an auxiliary model. Automatica, 2004, 40 (10): 1739- 1748.
doi: 10.1016/j.automatica.2004.05.001 |
11 |
CHEN J, LIU Y J, XU L. A new filter-based stochastic gradient algorithm for dual-rate ARX models. International Journal of Adaptive Control and Signal Processing, 2018, 32 (11): 1557- 1568.
doi: 10.1002/acs.2930 |
12 |
CHANG F, LUUS R. A noniterative method for identification using Hammerstein model. IEEE Trans. on Automatic Control, 1971, 16 (5): 464- 468.
doi: 10.1109/TAC.1971.1099787 |
13 |
DING F, CHEN T W. Hierarchical gradient-based identification of multivariable discrete-time systems. Automatica, 2005, 41 (2): 315- 325.
doi: 10.1016/j.automatica.2004.10.010 |
14 |
DING F, CHEN T W. Hierarchical least squares identification methods for multivariable systems. IEEE Trans. on Automatic Control, 2005, 50 (3): 397- 402.
doi: 10.1109/TAC.2005.843856 |
15 |
BAI E W, LI D. Convergence of the iterative Hammerstein system identification algorithm. IEEE Trans. on Automatic Control, 2004, 49 (11): 1929- 1940.
doi: 10.1109/TAC.2004.837592 |
16 |
NARENDRA K, GALLMAN P. An iterative method for the identification of nonlinear systems using a Hammerstein model. IEEE Trans. on Automatic Control, 1966, 11 (3): 546- 550.
doi: 10.1109/TAC.1966.1098387 |
17 | JIA L, LI X L. Identification of Hammerstein model: review and prospect. Control Theory & Applications, 2014, 31 (1): 1- 10. |
18 |
BAI E W, FU M Y. A blind approach to Hammerstein model identification. IEEE Trans. on Signal Processing, 2002, 50 (7): 1610- 1619.
doi: 10.1109/TSP.2002.1011202 |
19 | DING F. Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling. Applied Mathematical Modelling, 2013, 37 (4): 1694- 1704. |
20 | XU X P, QIAN F C, WANG F. Identification of Hammerstein model based on improved particle swarm optimization algorithm. Computer Engineering, 2008, 34 (14): 200- 202. |
21 |
DING F, LIU X M, GU Y. An auxiliary model based least squares algorithm for a dual-rate state space system with time-delay using the data filtering. Journal of the Franklin Institute, 2016, 353 (2): 398- 408.
doi: 10.1016/j.jfranklin.2015.10.025 |
22 |
CHEN J, WANG X P. Identification of Hammerstein systems with continuous nonlinearity. Information Processing Letters, 2015, 115 (11): 822- 827.
doi: 10.1016/j.ipl.2015.06.004 |
23 |
DING F, CHEN H B, XU L, et al. A hierarchical least squares identification algorithm for Hammerstein nonlinear systems using the key term separation. Journal of the Franklin Institute-Engineering and Applied Mathematics, 2018, 355 (8): 3737- 3752.
doi: 10.1016/j.jfranklin.2018.01.052 |
24 | FANG L, WANG J D, ZHANG Q H. Identification of extended Hammerstein systems with hysteresis type input nonlinearities described by Preisach model. Nonlinear Dynamics, 2015, 79 (2): 1257- 1273. |
25 | CHEN J, LIU Y J, WANG X H. Recursive least squares algorithm for nonlinear dual-rate systems using missing-output estimation model. Circuits Systems & Signal Processing, 2016, 36 (4): 1- 20. |
26 | LI X L, ZHOU L C, SHENG J, et al. Recursive least squares parameter estimation algorithm for dual-rate sampled-data nonlinear systems. Nonlinear Dynamics, 2014, 76 (2): 1327- 1334. |
27 |
WANG D Q, LIU H B, DING F. Highly efficient identification methods for dual-rate Hammerstein systems. IEEE Trans. on Control Systems Technology, 2015, 23 (5): 1952- 1960.
doi: 10.1109/TCST.2014.2387216 |
28 | WANG D Q, ZHANG Z, YUAN J Y. Maximum likelihood estimation method for dual-rate Hammerstein systems. International Journal of Control, Automation and Systems, 2017, 15 (2): 698- 705. |
29 | LI X L. Estimation methods for nonlinear systems with multirate sampling. Wuxi, China: Jiangnan University, 2014. |
30 |
BAI E W. Identification of linear systems with hard input nonlinearities of known structure. Automatica, 2002, 38 (5): 853- 860.
doi: 10.1016/S0005-1098(01)00281-3 |
[1] | Wei Gao, Jianguo Huang, Jing Han, and Qunfei Zhang. Theoretical convergence analysis of complex Gaussian kernel LMS algorithm [J]. Systems Engineering and Electronics, 2016, 27(1): 39-. |
[2] | Haihui Long and Jiankang Zhao. Identification of multiple inputs single output errors-in-variables system using cumulant [J]. Journal of Systems Engineering and Electronics, 2014, 25(6): 921-933. |
[3] | Jia Wei and Huajing Fang. Multi-agent consensus with time-varying delays and switching topologies [J]. Journal of Systems Engineering and Electronics, 2014, 25(3): 489-495. |
[4] | Huang Tianyun. On the direct searches for non-smooth stochastic optimization problems [J]. Journal of Systems Engineering and Electronics, 2009, 20(4): 889-898. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||