Journal of Systems Engineering and Electronics ›› 2020, Vol. 31 ›› Issue (1): 28-36.doi: 10.21629/JSEE.2020.01.04
• Electronics Technology • Previous Articles Next Articles
Shixin WANG*(), Yuan ZHAO(), Ibrahim LAILA(), Ying XIONG(), Jun WANG(), Bin TANG()
Received:
2019-02-25
Online:
2020-02-20
Published:
2020-02-25
Contact:
Shixin WANG
E-mail:wangshixin_uestc@163.com;zy_uestc@outlook.com;eng.laila2@hotmail.com;xiongy@uestc.edu.cn;wangjung@uestc.edu.cn;bint@uestc.edu.cn
About author:
WANG Shixin was born in 1995. She is currently an M.S. student in School of Information and Communication Engineering, University of Electronic Science and Technology of China (UESTC). Her current research interest includes electronic reconnaissance. E-mail: Shixin WANG, Yuan ZHAO, Ibrahim LAILA, Ying XIONG, Jun WANG, Bin TANG. Joint 2D DOA and Doppler frequency estimation for L-shaped array using compressive sensing[J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 28-36.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
SCHMIDT R. Multiple emitter location and signal parameter estimation. IEEE Trans. on Antennas and Propagation, 1986, 34 (3): 276- 280.
doi: 10.1109/TAP.1986.1143830 |
2 |
ROY R, KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1989, 37 (7): 984- 995.
doi: 10.1109/29.32276 |
3 |
RAO B D, HARI K V S. Performance analysis of root-MUSIC. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1989, 37 (12): 1939- 1949.
doi: 10.1109/29.45540 |
4 | DAS P, BHATTACHARJEE A, PATHAK S. Performance analysis of TLS-ESPRIT and QRTLS-ESPRIT algorithm for direction of arrival estimation. Proc. of the International Conference on Communications and Signal Processing, 2015, 1395- 1398. |
5 |
BENCHEIKH M L, WANG Y. Joint DOD-DOA estimation using combined ESPRIT-MUSIC approach in MIMO radar. Electronics Letters, 2010, 46 (15): 1081- 1083.
doi: 10.1049/el.2010.1195 |
6 |
TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. on Information Theory, 2007, 53 (12): 4655- 4666.
doi: 10.1109/TIT.2007.909108 |
7 | AICH A, PALANISAMY P. On application of OMP and COSAMP algorithms for DOA estimation problem. Proc. of the International Conference on Communication and Signal Processing, 2017, 1983- 1987. |
8 |
MALIOUTOV D, CETIN M, WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. on Signal Processing, 2005, 53 (8): 3010- 3022.
doi: 10.1109/TSP.2005.850882 |
9 |
ZHANG Z, RAO B D. Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning. IEEE Journal of Selected Topics in Signal Processing, 2011, 5 (5): 912- 926.
doi: 10.1109/JSTSP.2011.2159773 |
10 | CARLIN M, ROCCA P. A Bayesian compressive sensing strategy for direction-of-arrival estimation. Proc. of the 6th European Conference on Antennas and Propagation, 2012, 1508- 1509. |
11 | LIU C, VAIDYANATHAN P P. Coprime arrays and samplers for space-time adaptive processing. Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2015, 2364- 2368. |
12 | PAN J, ZHOU C, LIU B, et al. Joint DOA and Doppler frequency estimation for coprime arrays and samplers based on continuous compressed sensing. Proc. of the CIE International Conference on Radar, 2016, 1- 5. |
13 | DANG V, KILIC O. Joint DOA-range-Doppler tracking of moving targets based on compressive sensing. Proc. of the IEEE Antennas and Propagation Society International Symposium, 2014, 141- 142. |
14 |
SALARI S, KIM I, CHAN F, et al. Blind compressive-sensing-based electronic warfare receiver. IEEE Trans. on Aerospace and Electronic Systems, 2017, 53 (4): 2014- 2030.
doi: 10.1109/TAES.2017.2680686 |
15 | LUO X, SHEN F F, ZHAO G H. Low complexity DOA estimation approach through multitask Bayesian compressive sensing strategies. Proc. of the IEEE International Conference on Signal Processing, Communications and Computing, 2015, 1- 4. |
16 |
WANG G, XIN J, ZHENG N, et al. Computationally efficient subspace-based method for two-dimensional direction estimation with L-shaped array. IEEE Trans. on Signal Processing, 2011, 59 (7): 3197- 3212.
doi: 10.1109/TSP.2011.2144591 |
17 |
LUNDEN J, KOIVUNEN V. Automatic radar waveform recognition. IEEE Journal of Selected Topics in Signal Processing, 2007, 1 (1): 124- 136.
doi: 10.1109/JSTSP.2007.897055 |
18 | JIE C, HOU X M. Sparse representations for multiple measurement vectors (MMV) in an over-complete dictionary. Proc. of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, 257- 260. |
19 |
COTTER S F, RAO B D, KJERSTI E, et al. Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. on Signal Processing, 2005, 53 (7): 2477- 2488.
doi: 10.1109/TSP.2005.849172 |
20 |
JI S, DUNSON D, CARIN L. Multitask compressive sensing. IEEE Trans. on Signal Processing, 2009, 57 (1): 92- 106.
doi: 10.1109/TSP.2008.2005866 |
21 | BEN-TAL A, NEMIROVSKI A. Lectures on modern convex optimization. Philadelphia: Society for Industrial and Applied Mathematics, 2001. |
22 | GRANT M, BOYD S. CVX: Matlab software for disciplined convex programming. http://stanford.edu/boyd/cvx. |
23 |
CARLIN M, ROCCA P, OLIVERI G, et al. Directions-of-arrival estimation through Bayesian compressive sensing strategies. IEEE Trans. on Antennas and Propagation, 2013, 61 (7): 3828- 3838.
doi: 10.1109/TAP.2013.2256093 |
24 |
POLI L, OLIVERI G, ROCCA P, et al. Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illuminations. IEEE Trans. on Geoscience and Remote Sensing, 2013, 51 (5): 2920- 2936.
doi: 10.1109/TGRS.2012.2218613 |
25 |
XI N, LI L P. A computationally efficient subspace algorithm for 2-D DOA estimation with L-shaped array. IEEE Signal Processing Letters, 2014, 21 (8): 971- 974.
doi: 10.1109/LSP.2014.2321791 |
[1] | Jiabei CHEN, Qingzhan SHI, Zhaoyu HUANG, Qingping WANG, Naichang YUAN. Performance analysis of multi-group three-tuple cross-eye jamming [J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 80-90. |
[2] | Songtao LIU, Zhenshuo LEI, Yang GE, Zhenming WEN. Automatic radar antenna scan type recognition based on limited penetrable visibility graph [J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 437-446. |
[3] | Tianpeng LIU, Xizhang WEI, Bo PENG, Zhen LIU, Bin SUN, Zhiqiang GUAN. Tolerance analysis of multiple-element linear retrodirective cross-eye jamming [J]. Journal of Systems Engineering and Electronics, 2020, 31(3): 460-469. |
[4] | Degui YANG, Buge LIANG, Dangjun ZHAO. Cross-eye gain distribution of multiple-element retrodirective cross-eye jamming [J]. Journal of Systems Engineering and Electronics, 2018, 29(6): 1170-1179. |
[5] | Yuxi WANG, Guoce HUANG, Wei LI. Waveform design for radar and extended target in the environment of electronic warfare [J]. Journal of Systems Engineering and Electronics, 2018, 29(1): 48-57. |
[6] | Lanmei Wang, Zhihai Chen, Guibao Wang, and Xuan Rao. Estimating DOA and polarization with spatially spread loop and dipole pair array [J]. Journal of Systems Engineering and Electronics, 2015, 26(1): 44-. |
[7] | Peilin Sun, Jun Tang, and Xiaowei Tang. Cramer-Rao bound and signal-to-noise ratio gain in distributed coherent aperture radar [J]. Journal of Systems Engineering and Electronics, 2014, 25(2): 217-225. |
[8] | Guo Lei, Tang Bin & Liu Gang. Posterior Cramer-Rao lower bounds for bearing-only tracking [J]. Journal of Systems Engineering and Electronics, 2008, 19(1): 27-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||