1 |
LU M C, HSU C C, YU Y L. Image-based system for measuring objects on an oblique plane and its applications in 2-D localization. IEEE Sensors Journal, 2012, 12 (6): 2249- 2261.
doi: 10.1109/JSEN.2012.2186438
|
2 |
AHN C K, SHI P, BASIN M V. Two-dimensional dissipative control and filtering for Roesser model. IEEE Trans. on Automatic Control, 2015, 60 (7): 1745- 1759.
doi: 10.1109/TAC.2015.2398887
|
3 |
SONG H F, LIU J M, LIU B, et al. Two-dimensional materials for thermal management applications. Joule, 2018, 2 (3): 442- 463.
doi: 10.1016/j.joule.2018.01.006
|
4 |
YE S X, WANG W Q. Stability analysis and stabilisation for a class of 2-D nonlinear discrete systems. International Journal of Systems Science, 2011, 42 (5): 839- 851.
doi: 10.1080/00207721.2010.518255
|
5 |
HUANG S P, XIANG Z R. Delay-dependent robust H-infinity control for 2-D discrete nonlinear systems with state delays. Multidimensional Systems and Signal Processing, 2014, 25 (4): 775- 794.
doi: 10.1007/s11045-013-0230-y
|
6 |
BU X H, WANG H Q, HOU Z S, et al. Stabilisation of a class of two-dimensional nonlinear systems with intermittent measurements. IET Control Theory and Applications, 2014, 8 (15): 1596- 1604.
doi: 10.1049/iet-cta.2014.0170
|
7 |
BU X H, WANG H Q, HOU Z S, et al. H$\infty$ control for a class of 2-D nonlinear systems with intermittent measurements. Applied Mathematics and Computation, 2014, 247, 651- 662.
doi: 10.1016/j.amc.2014.08.107
|
8 |
KOKIL P. An improved criterion for the global asymptotic stability of 2-D discrete state-delayed systems with saturation nonlinearities. Circuits, Systems and Signal Processing, 2017, 36 (6): 2209- 2222.
doi: 10.1007/s00034-016-0397-1
|
9 |
XU H, ZOU Y, LU J, et al. Robust control for a class of uncertain nonlinear two-dimensional systems with state delays. Journal of the Franklin Institute, 2005, 342 (7): 877- 891.
doi: 10.1016/j.jfranklin.2005.07.003
|
10 |
KHALIL H K. Nonlinear systems. New Jersey: Prentice Hall, 2002.
|
11 |
DHAWAN A, KAR H. LMI-based criterion for the robust guaranteed cost control of 2-D systems described by the Fornasini-Marchesini second model. Signal Processing, 2007, 87 (3): 479- 488.
doi: 10.1016/j.sigpro.2006.06.002
|
12 |
DHAWAN A, KAR H. An LMI approach to robust optimal guaranteed cost control of 2-D discrete systems described by the Roesser model. Signal Processing, 2010, 90 (9): 2648- 2654.
doi: 10.1016/j.sigpro.2010.03.008
|
13 |
XU J M, YU L. Delay-dependent guaranteed cost control for uncertain 2-D discrete systems with state delay in the FM second model. Journal of the Franklin Institute, 2009, 346 (2): 159- 174.
doi: 10.1016/j.jfranklin.2008.08.003
|
14 |
PENG D, GUAN X P, LONG C N. Robust output feedback guaranteed cost control for 2-D uncertain state-delayed systems. Asian Journal of Control, 2007, 9 (4): 470- 474.
|
15 |
ARZEN K E. A simple event-based PID controller. Proc. of 14th IFAC World Congress, 1999, 18, 423- 428.
|
16 |
ASTROM K J, BERNHARDSSON B. Comparison of periodic and event based sampling for first order stochastic systems. Proc. of the 14th IFAC World Congress, 1999: 301-306.
|
17 |
LUNZE J, LEHMANN D. A state-feedback approach to event-based control. Automatica, 2010, 46 (1): 211- 215.
doi: 10.1016/j.automatica.2009.10.035
|
18 |
HEEMEL W, SANDEE J H, VAN D B. Analysis of event-driven controllers for linear systems. International Journal of Control, 2008, 81 (4): 571- 590.
doi: 10.1080/00207170701506919
|
19 |
WANG X, LEMMON M D. Event-triggering in distributed networked control systems. IEEE Trans. on Automatic Control, 2011, 56 (3): 586- 601.
doi: 10.1109/TAC.2010.2057951
|
20 |
YUE D, TIAN E, HAN Q L. A delay system method for designing event-triggered controllers of networked control systems. IEEE Trans. on Automatic Control, 2013, 58 (2): 475- 481.
doi: 10.1109/TAC.2012.2206694
|
21 |
HU S, YIN X, ZHANG Y, et al. Event-triggered guaranteed cost control for uncertain discrete-time networked control systems with time-varying transmission delays. IET Control Theory and Applications, 2012, 6 (18): 2793- 2804.
doi: 10.1049/iet-cta.2012.0036
|
22 |
YAN H C, ZHANG H, YANG F, et al. Event-triggered asynchronous guaranteed cost control for Markov jump discrete-time neural networks with distributed delay and channel fading. IEEE Trans. on Neural Networks and Learning Systems, 2018, 29(8): 3588-3598.
|
23 |
PENG C, HAN Q L. A novel event-triggered transmission scheme and L-2 control co-design for sampled-data control systems. IEEE Trans. on Automatic Control, 2013, 58(10): 2620-2626.
|
24 |
PENG C, YANG T C. Event-triggered communication and H$\infty $ control co-design for networked control systems. Automatica, 2013, 49 (5): 1326- 1332.
doi: 10.1016/j.automatica.2013.01.038
|
25 |
BARMISH B R. Necessary and sufficient conditions for quadratic stabilizability of an uncertain system. Journal of Optimization Theory and Applications, 1985, 46 (4): 399- 408.
doi: 10.1007/BF00939145
|