Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (6): 1144-1159.doi: 10.21629/JSEE.2019.06.10
• Systems Engineering • Previous Articles Next Articles
Hongwei LI1(), Jianyong LIU1(), Liang CHEN1,2,*(), Jingbo BAI1(), Yangyang SUN3(), Kai LU1()
Received:
2018-10-09
Online:
2019-12-20
Published:
2019-12-25
Contact:
Liang CHEN
E-mail:727802081@qq.com;jianyong1212@126.com;chenbb0708@163.com;baijingbo1982@163.com;bryant8011@163.com;xikaikaixi@outlook.com
About author:
LI Hongwei was born in 1978. He received his M.S. degree from University of Science and Technology of the PLA in 2002. He is an associate professor in College of Field Engineering, Army Engineering University of the PLA. His current research interests are military operations research and intelligent unmanned technology. E-mail: Supported by:
Hongwei LI, Jianyong LIU, Liang CHEN, Jingbo BAI, Yangyang SUN, Kai LU. Chaos-enhanced moth-flame optimization algorithm for global optimization[J]. Journal of Systems Engineering and Electronics, 2019, 30(6): 1144-1159.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Chaos maps"
Number | Name | Chaotic map |
1 | Chebyshev | |
2 | Circle map | |
3 | Gaussian map | |
4 | Iterative map | |
5 | Logistic map | |
6 | Piecewise map | |
7 | Sine map | |
8 | Singer map | |
9 | Sinusoidal map | |
10 | Tent map |
Table 2
Unimodal benchmark functions"
Formulation | Search range |
Table 3
Multimodal benchmark functions"
Formulation | Search range |
| |
| |
Table 4
Composite benchmark functions"
Formulation | Search range |
| |
| |
| |
| |
| |
|
Table 5
Results of MFO and IMFO"
Function | MFO | IMFO | |||||
Mean | SD | Mean | SD | ||||
| 9.46E+00 | 6.03E+00 | 4.08E-33 | ||||
1.60E+07 | 1.22E+07 | 4.08E-33 | |||||
3.85E+04 | 9.44E+03 | 6.88E-34 | |||||
6.48E+01 | 1.70E+01 | 5.93E-34 | |||||
1.10E+04 | 4.92E+03 | 6.11E-34 | |||||
1.06E+04 | 4.32E+03 | 5.35E-32 | |||||
1.85E+01 | 1.66E+00 | 1.29E-33 | |||||
9.77E+01 | 3.37E+01 | 3.78E-34 | |||||
1.88E+07 | 3.19E+07 | 9.00E-34 | |||||
4.80E+07 | 3.83E+07 | 2.99E-32 | |||||
2.23E+02 | 2.72E+01 | 7.99E-34 | |||||
5.44E+03 | 5.68E+02 | 8.34E-08 | |||||
9.77E+01 | 5.56E+01 | 2.38E-08 | |||||
N/A | 1.18E+02 | 3.89E+01 | 8.69E-08 | ||||
1.33E+03 | 2.58E+02 | 4.62E-23 | |||||
7.95E+02 | 7.32E+01 | 1.11E-09 | |||||
1.29E+02 | 3.86E+01 | 9.53E-10 | |||||
9.78E+02 | 2.78E+01 | 4.33E-33 |
Table 6
Results of unimodal benchmark functions for chaotic initialization population"
Algorithm | |||||||||||||||||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||||||||||||
MFO | 1.58E+00 | 7.84E-01 | 2.37E+06 | 1.18E+06 | 1.44E+04 | 3.37E+03 | 3.97E+03 | 1.29E+03 | |||||||||||||||
CMFO1 | 1.43E+00 | 1.01E+00 | 1.93E+06 | 9.89E+05 | 1.57E+04 | 4.17E+03 | 4.99E-02 | 1.82E+01 | 4.60E+00 | 3.47E+03 | 7.80E+02 | 3.82E+03 | 7.71E+02 | ||||||||||
CMFO2 | 1.39E+00 | 5.36E-01 | 2.06E+06 | 1.23E+06 | 1.62E+04 | 4.52E+03 | 2.00E+01 | 3.49E+00 | 7.71E-03 | 3.30E+03 | 7.55E+02 | 3.48E+03 | 9.04E+02 | ||||||||||
CMFO3 | 5.98E+02 | 1.60E-02 | 6.80E-08 | 9.46E+08 | 6.41E+01 | 6.80E-08 | 5.92E+06 | 1.05E+04 | 6.80E-08 | 2.27E+02 | 2.67E+02 | 6.80E-08 | 1.31E+05 | 1.08E+00 | 6.80E-08 | 1.27E+05 | 9.50E-01 | 6.80E-08 | |||||
CMFO4 | 1.42E+00 | 4.23E-01 | 2.36E+06 | 1.47E+06 | 1.58E+04 | 4.35E+03 | 9.16E+01 | 3.25E+01 | 6.92E-07 | 3.74E+03 | 9.26E+02 | 3.60E-02 | 3.65E+03 | 1.20E+03 | |||||||||
CMFO5 | 2.32E+06 | 1.33E+06 | 1.68E+04 | 3.26E+03 | 1.95E-03 | 1.90E+01 | 4.21E+00 | 3.52E+03 | 7.22E+02 | 3.43E+03 | 1.17E+03 | ||||||||||||
CMFO6 | 1.56E+00 | 5.05E-01 | 2.17E+06 | 1.37E+06 | 1.49E+04 | 3.69E+03 | 1.87E+01 | 4.33E+00 | 3.67E+03 | 1.05E+03 | 3.66E+03 | 9.74E+02 | |||||||||||
CMFO7 | 1.50E+00 | 6.09E-01 | 2.72E+06 | 1.46E+06 | 4.11E-02 | 1.66E+04 | 3.65E+03 | 5.56E-03 | 1.88E+01 | 2.95E+00 | 3.15E-02 | 3.65E+03 | 1.10E+03 | 3.36E+03 | 1.07E+03 | ||||||||
CMFO8 | 1.63E+00 | 4.34E-01 | 3.13E+06 | 1.34E+06 | 6.22E-04 | 1.71E+04 | 4.24E+03 | 4.70E-03 | 1.87E+01 | 2.88E+00 | 3.85E-02 | 3.88E+03 | 1.16E+03 | 4.68E-02 | 3.56E+03 | 8.50E+02 | |||||||
CMFO9 | 1.69E+00 | 7.26E-01 | 2.79E+06 | 1.82E+06 | 1.91E+01 | 4.78E+00 | 3.73E+03 | 1.12E+03 | |||||||||||||||
CMFO10 | 1.38E+00 | 5.93E-01 | 1.70E+04 | 4.15E+03 | 6.04E-03 | 1.84E+01 | 3.36E+00 | 3.16E+03 | 8.82E+02 | 3.53E+03 | 1.10E+03 |
Table 7
Results of multimodal benchmark functions for chaotic initialization population"
Algorithm | |||||||||||||||||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||||||||||||
MFO | 1.18E+01 | 1.01E+00 | 2.92E+01 | 1.01E+01 | 7.65E+05 | 1.02E+06 | 4.33E+06 | 3.27E+06 | 5.51E+03 | 4.96E+02 | 5.63E-04 | ||||||||||||
CMFO1 | 1.18E+01 | 1.35E+00 | 3.28E+01 | 1.04E+01 | 1.27E+02 | 2.01E+01 | 5.34E+03 | 5.50E+02 | 7.71E-03 | ||||||||||||||
CMFO2 | 1.19E+01 | 1.04E+00 | 3.32E+01 | 1.04E+01 | 4.99E-02 | 9.36E+05 | 2.18E+06 | 4.55E+06 | 3.96E+06 | 1.24E+02 | 1.73E+01 | 5.64E+03 | 6.12E+02 | 4.16E-04 | |||||||||
CMFO3 | 2.04E+01 | 3.83E-02 | 6.80E-08 | 1.16E+03 | 1.77E-02 | 6.80E-08 | 2.72E+09 | 2.85E-01 | 6.80E-08 | 4.47E+09 | 1.35E+00 | 6.80E-08 | 5.58E+02 | 3.21E+00 | 6.80E-08 | 1.06E+04 | 1.37E+02 | 6.80E-08 | |||||
CMFO4 | 1.18E+01 | 7.33E-01 | 3.30E+01 | 9.07E+00 | 4.11E-02 | 8.87E+05 | 1.12E+06 | 5.02E+06 | 5.89E+06 | 1.28E+02 | 1.75E+01 | 5.40E+03 | 4.82E+02 | 3.34E-03 | |||||||||
CMFO5 | 3.24E+01 | 5.27E+00 | 1.67E-02 | 5.01E+05 | 4.22E+05 | 5.86E+06 | 4.09E+06 | 3.97E-03 | 1.29E+02 | 1.53E+01 | 5.46E+03 | 5.03E+02 | 1.95E-03 | ||||||||||
CMFO6 | 1.20E+01 | 1.10E+00 | 3.04E+01 | 8.46E+00 | 9.13E+05 | 8.67E+05 | 4.68E-02 | 3.75E+06 | 4.20E+06 | 1.33E+02 | 2.17E+01 | 4.11E-02 | 5.82E+03 | 5.74E+02 | 4.17E-05 | ||||||||
CMFO7 | 1.21E+01 | 1.21E+00 | 3.12E+01 | 7.58E+00 | 7.22E+05 | 8.10E+05 | 4.99E+06 | 3.77E+06 | 1.44E-02 | 1.25E+02 | 2.18E+01 | 5.15E+03 | 5.87E+02 | ||||||||||
CMFO8 | 1.17E+01 | 1.24E+00 | 3.25E+01 | 1.18E+01 | 2.86E+06 | 3.47E+06 | 1.10E-05 | 6.02E+06 | 4.52E+06 | 1.79E-04 | 1.30E+02 | 1.72E+01 | 4.99E-02 | ||||||||||
CMFO9 | 1.18E+01 | 1.07E+00 | 3.17E+01 | 8.96E+00 | 1.16E+06 | 9.33E+05 | 6.56E-03 | 6.41E+06 | 8.58E+06 | 1.34E+02 | 1.51E+01 | 6.56E-03 | 5.20E+03 | 4.20E+02 | 2.56E-02 | ||||||||
CMFO10 | 1.22E+01 | 1.12E+00 | 6.53E+05 | 5.17E+05 | 3.78E+06 | 3.39E+06 | 1.41E+02 | 2.12E+01 | 6.87E-04 | 5.73E+03 | 4.36E+02 | 2.60E-05 |
Table 8
Results of composite benchmark functions for chaotic initialization population"
Algorithm | |||||||||||||||||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||||||||||||
MFO | 8.36E+01 | 4.63E+01 | 9.27E+01 | 1.91E+01 | 9.77E+02 | 2.61E+02 | 7.50E+02 | 5.17E+01 | 1.79E-02 | 1.02E+02 | 2.40E+01 | ||||||||||||
CMFO1 | 7.02E+01 | 2.16E+01 | 1.03E+02 | 4.97E+01 | 9.47E+02 | 2.08E+02 | 7.23E+02 | 5.36E+01 | 1.01E+02 | 1.86E+01 | 9.36E+02 | 9.46E+00 | |||||||||||
CMFO2 | 8.05E+01 | 4.70E+01 | 1.21E+02 | 8.93E+01 | 9.85E+02 | 1.59E+02 | 1.14E-02 | 7.30E+02 | 5.27E+01 | 1.02E+02 | 1.63E+01 | 9.34E+02 | 1.19E+01 | ||||||||||
CMFO3 | 1.48E+03 | 1.38E-01 | 6.80E-08 | 1.47E+03 | 4.18E+01 | 6.80E-08 | 2.08E+03 | 2.54E+00 | 6.80E-08 | 1.43E+03 | 3.87E+00 | 6.80E-08 | 1.52E+03 | 6.78E+01 | 6.80E-08 | 1.88E+03 | 1.42E-02 | 6.80E-08 | |||||
CMFO4 | 6.85E+01 | 2.55E+01 | 9.13E+01 | 1.48E+01 | 8.84E+02 | 1.57E+02 | 7.80E+02 | 5.81E+01 | 2.00E-04 | 1.13E+02 | 3.46E+01 | 9.34E+02 | 1.10E+01 | ||||||||||
CMFO5 | 6.63E+01 | 1.49E+01 | 9.60E+01 | 1.63E+01 | 8.36E+02 | 2.30E+02 | 1.01E+02 | 2.87E+01 | 9.37E+02 | 9.67E+00 | |||||||||||||
CMFO6 | 1.41E+02 | 4.36E+01 | 1.10E-05 | 1.74E+02 | 3.86E+01 | 1.20E-06 | 9.58E+02 | 2.02E+02 | 7.58E+02 | 4.35E+01 | 3.34E-03 | 1.95E+02 | 1.56E+01 | 6.80E-08 | 9.35E+02 | 1.09E+01 | |||||||
CMFO7 | 7.86E+01 | 6.57E+01 | 9.40E+01 | 1.66E+01 | 7.44E+02 | 5.29E+01 | 1.33E-02 | 1.13E+02 | 2.49E+01 | 3.37E-02 | 9.35E+02 | 1.06E+01 | |||||||||||
CMFO8 | 6.98E+01 | 1.51E+01 | 1.01E+02 | 5.14E+01 | 9.79E+02 | 1.68E+02 | 1.23E-02 | 7.55E+02 | 5.07E+01 | 5.12E-03 | 1.04E+02 | 1.48E+01 | 9.34E+02 | 1.07E+01 | |||||||||
CMFO9 | 8.98E+02 | 2.03E+02 | 7.66E+02 | 8.19E+01 | 1.44E-02 | 1.03E+02 | 1.60E+01 | 9.34E+02 | 1.01E+01 | ||||||||||||||
CMFO10 | 1.04E+02 | 7.83E+01 | 1.79E-02 | 1.05E+02 | 6.65E+01 | 9.14E+02 | 2.17E+02 | 7.70E+02 | 3.67E+01 | 4.60E-04 | 9.36E+02 | 1.14E+01 |
Table 9
Statistical results for chaotic initialization population"
Group | Number | MFO | CMFO1 | CMFO2 | CMFO3 | CMFO4 | CMFO5 | CMFO6 | CMFO7 | CMFO8 | CMFO9 | CMFO10 |
Group1 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 1 | |
4 | 5 | 5 | 0 | 4 | 4 | 6 | 3 | 2 | 4 | 4 | ||
Group2 | 1 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | |
4 | 3 | 5 | 0 | 4 | 2 | 3 | 5 | 2 | 3 | 3 | ||
Group3 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 2 | 1 | |
4 | 6 | 5 | 0 | 5 | 5 | 2 | 3 | 4 | 3 | 3 |
Table 10
Results of unimodal benchmark functions for chaotic boundary handing"
Algorithm | |||||||||||||||||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||||||||||||
MFO | 1.58E+00 | 7.84E-01 | 2.37E+06 | 1.18E+06 | 3.97E+03 | 1.29E+03 | 2.34E-03 | ||||||||||||||||
CMFO11 | 3.97E+00 | 2.42E+00 | 1.38E-06 | 6.48E+06 | 4.57E+06 | 1.81E-05 | 2.66E+04 | 7.57E+03 | 2.69E-06 | 2.39E+01 | 4.39E+00 | 1.41E-05 | 6.74E+03 | 1.49E+03 | 2.22E-07 | 6.41E+03 | 1.34E+03 | 6.80E-08 | |||||
CMFO12 | 1.37E+00 | 6.84E-01 | 2.04E+06 | 1.17E+06 | 1.69E+04 | 3.55E+03 | 4.39E-02 | 1.97E+01 | 3.37E+00 | 1.06E-02 | 3.19E+03 | 1.02E+03 | |||||||||||
CMFO13 | 8.55E+00 | 7.23E+00 | 1.80E-06 | 5.60E+06 | 2.84E+06 | 1.38E-06 | 2.58E+04 | 6.77E+03 | 1.20E-06 | 4.77E+01 | 1.45E+01 | 6.80E-08 | 7.33E+03 | 2.50E+03 | 4.54E-07 | 7.47E+03 | 3.97E+03 | 2.96E-07 | |||||
CMFO14 | 1.74E+00 | 7.01E-01 | 1.23E-02 | 2.16E+06 | 1.10E+06 | 1.80E+04 | 4.66E+03 | 1.79E-02 | 2.10E+01 | 4.94E+00 | 4.70E-03 | 3.68E+03 | 1.10E+03 | 3.77E+03 | 1.16E+03 | 2.80E-03 | |||||||
CMFO15 | 2.46E+00 | 9.06E-01 | 1.10E-05 | 2.73E+06 | 1.21E+06 | 7.71E-03 | 2.00E+04 | 5.33E+03 | 3.05E-04 | 2.17E+01 | 4.41E+00 | 8.36E-04 | 4.49E+03 | 1.34E+03 | 4.60E-04 | 4.21E+03 | 1.47E+03 | 4.16E-04 | |||||
CMFO16 | 1.53E+00 | 5.77E-01 | 2.03E+06 | 9.69E+05 | 1.67E+04 | 5.05E+03 | 2.10E+01 | 4.47E+00 | 3.64E-03 | 3.91E+03 | 1.11E+03 | 2.75E-02 | 3.48E+03 | 8.14E+02 | 6.04E-03 | ||||||||
CMFO17 | 1.66E+00 | 6.04E-01 | 1.44E-02 | 3.54E+06 | 2.37E+06 | 5.12E-03 | 1.97E+04 | 4.98E+03 | 9.21E-04 | 2.23E+01 | 3.91E+00 | 1.04E-04 | 4.25E+03 | 1.00E+03 | 1.01E-03 | 4.49E+03 | 1.25E+03 | 1.60E-05 | |||||
CMFO18 | 1.55E+00 | 5.08E-01 | 3.15E-02 | 2.88E+06 | 2.08E+06 | 1.83E+04 | 5.45E+03 | 1.67E-02 | 1.96E+01 | 3.90E+00 | 2.39E-02 | 3.78E+03 | 1.26E+03 | 4.57E+03 | 1.31E+03 | 2.06E-06 | |||||||
CMFO19 | 2.42E+06 | 1.42E+06 | 1.69E+04 | 4.60E+03 | 1.90E+01 | 3.31E+00 | 4.99E-02 | 3.15E+03 | 9.35E+02 | 3.45E+03 | 1.02E+03 | 1.55E-02 | |||||||||||
CMFO20 | 1.37E+00 | 3.68E-01 | 1.58E+04 | 5.17E+03 | 2.01E+01 | 3.49E+00 | 3.97E-03 | 3.79E+03 | 1.30E+03 | 2.95E+03 | 7.72E+02 |
Table 11
Results of multimodal benchmark functions for chaotic boundary handing"
Algorithm | |||||||||||||||||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||||||||||||
MFO | 1.18E+01 | 1.01E+00 | 2.92E+01 | 1.01E+01 | 7.65E+05 | 1.02E+06 | 4.33E+06 | 3.27E+06 | 5.51E+03 | 4.96E+02 | 2.36E-06 | ||||||||||||
CMFO11 | 1.43E+01 | 1.49E+00 | 3.94E-07 | 5.53E+01 | 1.52E+01 | 2.06E-06 | 4.83E+06 | 4.60E+06 | 1.20E-06 | 1.35E+07 | 5.84E+06 | 3.50E-06 | 1.47E+02 | 1.58E+01 | 1.81E-05 | 5.13E+03 | 6.85E+02 | 1.44E-04 | |||||
CMFO12 | 1.15E+01 | 9.23E-01 | 1.21E+02 | 2.20E+01 | 5.82E+03 | 4.13E+02 | 6.92E-07 | ||||||||||||||||
CMFO13 | 1.56E+01 | 2.25E+00 | 2.56E-07 | 6.23E+01 | 2.85E+01 | 1.20E-06 | 3.58E+06 | 2.27E+06 | 2.06E-06 | 1.76E+07 | 9.50E+06 | 2.56E-07 | 1.91E+02 | 2.98E+01 | 2.22E-07 | 6.41E+03 | 4.99E+02 | 2.22E-07 | |||||
CMFO14 | 1.22E+01 | 9.62E-01 | 2.14E-03 | 3.57E+01 | 9.21E+00 | 6.56E-03 | 5.74E+05 | 7.89E+05 | 5.80E+06 | 4.25E+06 | 1.31E+02 | 2.04E+01 | 3.15E-02 | 5.22E+03 | 6.41E+02 | 1.79E-04 | |||||||
CMFO15 | 1.26E+01 | 1.21E+00 | 4.60E-04 | 3.78E+01 | 1.17E+01 | 5.56E-03 | 1.25E+06 | 1.13E+06 | 4.32E-03 | 8.34E+06 | 6.46E+06 | 1.95E-03 | 1.41E+02 | 2.82E+01 | 3.97E-03 | 5.09E+03 | 6.07E+02 | 6.22E-04 | |||||
CMFO16 | 1.19E+01 | 9.71E-01 | 4.68E-02 | 3.34E+01 | 9.71E+00 | 3.15E-02 | 6.71E+05 | 5.97E+05 | 5.25E+06 | 3.83E+06 | 1.32E+02 | 2.06E+01 | 2.39E-02 | 5.34E+03 | 4.71E+02 | 1.81E-05 | |||||||
CMFO17 | 1.25E+01 | 1.25E+00 | 7.58E-04 | 3.67E+01 | 7.97E+00 | 6.87E-04 | 1.57E+06 | 1.68E+06 | 2.34E-03 | 8.04E+06 | 7.99E+06 | 1.67E-02 | 1.40E+02 | 2.29E+01 | 2.34E-03 | 5.04E+03 | 2.82E+02 | 2.30E-05 | |||||
CMFO18 | 1.23E+01 | 1.26E+00 | 5.12E-03 | 3.17E+01 | 9.49E+00 | 1.60E+06 | 1.71E+06 | 1.12E-03 | 6.67E+06 | 4.37E+06 | 6.56E-03 | 1.41E+02 | 2.25E+01 | 2.80E-03 | 4.69E+03 | 5.00E+02 | 1.67E-02 | ||||||
CMFO19 | 1.19E+01 | 1.10E+00 | 2.90E+01 | 8.21E+00 | 5.94E+05 | 4.99E+05 | 5.61E+06 | 5.55E+06 | 1.28E+02 | 2.48E+01 | |||||||||||||
CMFO20 | 3.26E+01 | 8.36E+00 | 2.94E-02 | 5.64E+05 | 5.82E+05 | 4.00E+06 | 2.49E+06 | 1.31E+02 | 1.39E+01 | 2.23E-02 | 5.52E+03 | 5.86E+02 | 5.17E-06 |
Table 12
Results of composite benchmark functions for chaotic boundary handing"
Algorithm | |||||||||||||||||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||||||||||||
MFO | 8.36E+01 | 4.63E+01 | 9.27E+01 | 1.91E+01 | 9.77E+02 | 2.61E+02 | 7.50E+02 | 5.17E+01 | 1.02E+02 | 2.40E+01 | |||||||||||||
CMFO11 | 1.69E+02 | 1.15E+02 | 6.92E-07 | 2.22E+02 | 1.28E+02 | 6.80E-08 | 1.52E+03 | 1.91E+02 | 1.43E-07 | 9.40E+02 | 1.25E+02 | 3.07E-06 | 2.29E+02 | 1.04E+02 | 6.80E-08 | 9.77E+02 | 2.24E+01 | 7.90E-08 | |||||
CMFO12 | 1.16E+02 | 8.27E+01 | 2.14E-03 | 1.13E+02 | 1.83E+01 | 1.05E-06 | 1.00E+03 | 2.14E+02 | 7.59E+02 | 4.97E+01 | 1.23E+02 | 3.66E+01 | 1.78E-03 | 9.33E+02 | 8.83E+00 | ||||||||
CMFO13 | 2.69E+02 | 1.18E+02 | 6.80E-08 | 2.60E+02 | 1.03E+02 | 6.80E-08 | 1.63E+03 | 9.72E+01 | 6.80E-08 | 8.22E+02 | 7.85E+01 | 1.29E-04 | 3.04E+02 | 1.42E+02 | 6.80E-08 | 9.80E+02 | 2.47E+01 | 1.92E-07 | |||||
CMFO14 | 6.71E+01 | 1.15E+01 | 9.35E+01 | 1.53E+01 | 4.68E-02 | 9.44E+02 | 2.57E+02 | 7.35E+02 | 5.32E+01 | 1.03E+02 | 2.24E+01 | 9.34E+02 | 8.78E+00 | ||||||||||
CMFO15 | 6.92E+01 | 2.14E+01 | 9.31E+01 | 1.78E+01 | 9.92E+02 | 2.12E+02 | 1.03E+02 | 2.14E+01 | 9.35E+02 | 1.13E+01 | |||||||||||||
CMFO16 | 8.85E+01 | 4.91E+01 | 1.25E+02 | 9.29E+01 | 1.44E-02 | 9.66E+02 | 2.56E+02 | 7.63E+02 | 7.11E+01 | 1.21E+02 | 4.33E+01 | 4.39E-02 | 9.34E+02 | 1.01E+01 | |||||||||
CMFO17 | 6.84E+01 | 1.64E+01 | 1.10E+02 | 4.94E+01 | 6.56E-03 | 9.81E+02 | 2.14E+02 | 7.40E+02 | 5.92E+01 | 1.05E+02 | 3.39E+01 | 9.34E+02 | 1.33E+01 | ||||||||||
CMFO18 | 6.96E+01 | 1.61E+01 | 8.89E+02 | 2.08E+02 | 7.46E+02 | 5.69E+01 | 9.39E+02 | 1.03E+01 | 2.94E-02 | ||||||||||||||
CMFO19 | 9.10E+01 | 1.42E+01 | 9.47E+02 | 1.71E+02 | 7.40E+02 | 4.10E+01 | 9.63E+01 | 1.62E+01 | 9.45E+02 | 8.33E+00 | 2.04E-05 | ||||||||||||
CMFO20 | 8.57E+01 | 6.92E+01 | 9.29E+01 | 1.70E+01 | 3.15E-02 | 7.42E+02 | 6.10E+01 | 1.05E+02 | 2.59E+01 | 9.36E+02 | 9.50E+00 |
Table 13
Statistical results for chaotic boundary handing"
Group | Number | MFO | CMFO11 | CMFO12 | CMFO13 | CMFO14 | CMFO15 | CMFO16 | CMFO17 | CMFO18 | CMFO19 | CMFO20 |
Group1 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | |
2 | 0 | 3 | 0 | 2 | 0 | 3 | 0 | 2 | 3 | 3 | ||
Group2 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | |
4 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 1 | 5 | 2 | ||
Group3 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 1 | 1 | |
5 | 0 | 3 | 0 | 5 | 5 | 4 | 5 | 3 | 4 | 4 |
Table 14
Results of unimodal benchmark functions for tuning distance parameter $r$"
Algorithm | |||||||||||||||||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||||||||||||
MFO | 1.58E+00 | 7.84E-01 | 3.60E-02 | 2.37E+06 | 1.18E+06 | 1.79E-04 | 1.67E+01 | 3.65E+00 | 6.22E-04 | 3.11E+03 | 9.55E+02 | 3.97E+03 | 1.29E+03 | 7.58E-06 | |||||||||
CMFO21 | 2.04E+01 | 5.20E+00 | 6.80E-08 | 4.75E+07 | 7.79E+06 | 6.80E-08 | 4.24E+04 | 6.87E+03 | 6.80E-08 | 1.51E+02 | 2.01E+02 | 6.80E-08 | 2.59E+04 | 3.07E+03 | 6.80E-08 | 2.50E+04 | 2.70E+03 | 6.80E-08 | |||||
CMFO22 | 3.31E+00 | 1.24E+00 | 3.42E-07 | 8.32E+06 | 3.78E+06 | 6.80E-08 | 2.20E+04 | 5.15E+03 | 1.81E-05 | 3.37E+01 | 5.36E+00 | 6.80E-08 | 8.21E+03 | 1.99E+03 | 1.78E-03 | 8.34E+03 | 2.19E+03 | 6.80E-08 | |||||
CMFO23 | 3.76E+01 | 7.99E+00 | 6.80E-08 | 9.13E+07 | 1.19E+07 | 6.80E-08 | 5.39E+04 | 6.96E+03 | 6.80E-08 | 1.69E+03 | 3.14E+03 | 6.80E-08 | 3.59E+04 | 3.40E+03 | 6.80E-08 | 3.63E+04 | 3.25E+03 | 6.80E-08 | |||||
CMFO24 | 1.23E+00 | 5.55E-01 | 2.07E+06 | 7.70E+05 | 7.41E-05 | 1.65E+04 | 3.75E+03 | 2.06E+01 | 3.46E+00 | 6.01E-07 | 3.23E+03 | 7.25E+02 | 3.92E+03 | 1.01E+03 | 1.80E-06 | ||||||||
CMFO25 | 2.49E+00 | 1.21E+00 | 7.58E-06 | 5.36E+06 | 2.30E+06 | 6.80E-08 | 1.55E+04 | 4.44E+03 | 2.93E+01 | 4.77E+00 | 7.90E-08 | 5.35E+03 | 1.44E+03 | 6.13E+03 | 1.77E+03 | 7.90E-08 | |||||||
CMFO26 | 2.42E+00 | 1.01E+00 | 2.60E-05 | 5.27E+06 | 1.98E+06 | 7.90E-08 | 1.81E+04 | 3.07E+03 | 1.95E-03 | 2.61E+01 | 3.44E+00 | 7.90E-08 | 6.34E+03 | 2.22E+03 | 4.39E-02 | 5.99E+03 | 1.96E+03 | 2.56E-07 | |||||
CMFO27 | 3.20E+00 | 1.43E+00 | 7.95E-07 | 5.61E+06 | 2.45E+06 | 1.06E-07 | 2.03E+04 | 4.03E+03 | 6.61E-05 | 2.91E+01 | 5.11E+00 | 7.90E-08 | 6.26E+03 | 1.55E+03 | 7.83E+03 | 2.01E+03 | 6.80E-08 | ||||||
CMFO28 | 1.58E+04 | 5.77E+03 | |||||||||||||||||||||
CMFO29 | 1.82E+00 | 1.05E+00 | 4.70E-03 | 3.22E+06 | 1.89E+06 | 1.29E-04 | 2.00E+04 | 4.34E+03 | 8.29E-05 | 1.79E+01 | 4.67E+00 | 9.28E-05 | 3.55E+03 | 1.35E+03 | 3.36E+03 | 1.46E+03 | 2.34E-03 | ||||||
CMFO30 | 1.52E+00 | 3.86E-01 | 9.21E-04 | 2.20E+06 | 1.39E+06 | 2.34E-03 | 1.45E+04 | 3.28E+03 | 1.88E+01 | 3.56E+00 | 2.30E-05 | 3.04E+03 | 8.77E+02 | 3.72E+03 | 9.56E+02 | 1.80E-06 |
Table 15
Results of multimodal benchmark functions for tuning distance parameter $r$"
Algorithm | |||||||||||||||||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||||||||||||
MFO | 1.18E+01 | 1.01E+00 | 1.35E-03 | 2.92E+01 | 1.01E+01 | 9.05E-03 | 7.65E+05 | 1.02E+06 | 4.33E+06 | 3.27E+06 | 2.23E-02 | 1.18E+02 | 1.76E+01 | 5.51E+03 | 4.96E+02 | ||||||||
CMFO21 | 1.87E+01 | 4.32E-01 | 6.80E-08 | 2.25E+02 | 2.30E+01 | 6.80E-08 | 5.73E+07 | 2.71E+07 | 6.80E-08 | 1.64E+08 | 5.31E+07 | 6.80E-08 | 2.90E+02 | 1.85E+01 | 6.80E-08 | 7.88E+03 | 5.03E+02 | 6.80E-08 | |||||
CMFO22 | 1.50E+01 | 6.98E-01 | 6.80E-08 | 8.25E+01 | 1.80E+01 | 6.80E-08 | 5.03E+06 | 4.02E+06 | 2.56E-07 | 1.80E+07 | 8.20E+06 | 6.80E-08 | 1.82E+02 | 2.29E+01 | 1.06E-07 | 5.87E+03 | 5.56E+02 | 1.23E-02 | |||||
CMFO23 | 1.94E+01 | 2.08E-01 | 6.80E-08 | 3.30E+02 | 2.77E+01 | 6.80E-08 | 1.42E+08 | 4.75E+07 | 6.80E-08 | 3.24E+08 | 7.36E+07 | 6.80E-08 | 3.23E+02 | 2.18E+01 | 6.80E-08 | 7.97E+03 | 4.19E+02 | 6.80E-08 | |||||
CMFO24 | 1.20E+01 | 1.05E+00 | 3.05E-04 | 3.50E+01 | 9.77E+00 | 4.68E-05 | 5.02E+06 | 5.54E+06 | 3.60E-02 | 1.22E+02 | 1.91E+01 | 5.58E+03 | 4.61E+02 | ||||||||||
CMFO25 | 1.36E+01 | 9.40E-01 | 7.90E-08 | 5.13E+01 | 1.65E+01 | 1.23E-07 | 1.44E+06 | 1.07E+06 | 1.12E-03 | 1.19E+07 | 6.68E+06 | 1.80E-06 | 1.47E+02 | 2.01E+01 | 1.10E-05 | 5.53E+03 | 5.63E+02 | ||||||
CMFO26 | 1.40E+01 | 1.12E+00 | 7.90E-08 | 5.33E+01 | 1.35E+01 | 4.54E-07 | 1.20E+06 | 8.19E+05 | 2.14E-03 | 1.36E+07 | 7.04E+06 | 1.06E-07 | 1.64E+02 | 1.71E+01 | 3.94E-07 | 5.91E+03 | 5.54E+02 | 2.80E-03 | |||||
CMFO27 | 1.46E+01 | 7.20E-01 | 6.80E-08 | 6.02E+01 | 1.74E+01 | 6.80E-08 | 6.08E+06 | 6.06E+06 | 9.13E-07 | 1.37E+07 | 7.79E+06 | 1.23E-07 | 1.61E+02 | 2.66E+01 | 2.69E-06 | 5.58E+03 | 8.93E+02 | ||||||
CMFO28 | 4.82E+05 | 6.02E+05 | |||||||||||||||||||||
CMFO29 | 1.19E+01 | 1.41E+00 | 1.95E-03 | 3.05E+01 | 1.02E+01 | 1.95E-03 | 8.39E+05 | 8.56E+05 | 5.62E+06 | 4.18E+06 | 3.97E-03 | 1.55E+02 | 2.53E+01 | 7.58E-06 | 6.57E+03 | 5.69E+02 | 2.36E-06 | ||||||
CMFO30 | 1.15E+01 | 8.73E-01 | 1.78E-03 | 2.98E+01 | 6.77E+00 | 3.75E-04 | 8.89E+05 | 1.67E+06 | 4.49E+06 | 3.31E+06 | 1.23E-02 | 1.33E+02 | 2.11E+01 | 3.06E-03 | 5.71E+03 | 6.05E+02 |
Table 16
Results of composite benchmark functions for tuning distance parameter $r$"
Algorithm | |||||||||||||||||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||||||||||||
MFO | 8.36E+01 | 4.63E+01 | 9.27E+01 | 1.91E+01 | 9.77E+02 | 2.61E+02 | 3.34E-03 | 7.50E+02 | 5.17E+01 | 1.02E+02 | 2.40E+01 | 2.22E-04 | 9.32E+02 | 7.19E+00 | 3.34E-03 | ||||||||
CMFO21 | 3.34E+02 | 5.06E+01 | 7.90E-08 | 3.57E+02 | 5.20E+01 | 9.17E-08 | 1.74E+03 | 2.17E+01 | 6.80E-08 | 9.73E+02 | 6.97E+01 | 6.80E-08 | 3.85E+02 | 5.86E+01 | 6.80E-08 | 1.11E+03 | 3.37E+01 | 6.80E-08 | |||||
CMFO22 | 1.33E+02 | 2.84E+01 | 4.54E-06 | 1.54E+02 | 3.72E+01 | 1.80E-06 | 1.40E+03 | 1.93E+02 | 1.92E-07 | 7.69E+02 | 5.32E+01 | 2.23E-02 | 1.64E+02 | 3.09E+01 | 7.90E-08 | 9.69E+02 | 1.82E+01 | 1.66E-07 | |||||
CMFO23 | 4.39E+02 | 7.87E+01 | 6.80E-08 | 4.81E+02 | 6.69E+01 | 6.80E-08 | 1.78E+03 | 2.00E+01 | 6.80E-08 | 1.15E+03 | 6.60E+01 | 6.80E-08 | 5.07E+02 | 6.58E+01 | 6.80E-08 | 1.28E+03 | 3.51E+01 | 6.80E-08 | |||||
CMFO24 | 9.81E+01 | 9.60E+01 | 1.09E+02 | 4.52E+01 | 2.34E-03 | 1.04E+03 | 2.03E+02 | 2.47E-04 | 1.15E+02 | 4.28E+01 | 4.17E-05 | 9.36E+02 | 1.49E+01 | 3.34E-03 | |||||||||
CMFO25 | 9.13E+01 | 2.03E+01 | 2.56E-03 | 1.17E+02 | 2.57E+01 | 6.61E-05 | 1.16E+03 | 2.13E+02 | 7.58E-06 | 7.52E+02 | 5.01E+01 | 1.26E+02 | 1.74E+01 | 2.56E-07 | 9.58E+02 | 1.74E+01 | 2.22E-07 | ||||||
CMFO26 | 1.27E+02 | 9.10E+01 | 3.06E-03 | 1.23E+02 | 2.04E+01 | 4.54E-06 | 1.27E+03 | 1.97E+02 | 6.92E-07 | 7.57E+02 | 6.14E+01 | 1.39E+02 | 3.23E+01 | 1.23E-07 | 9.61E+02 | 1.46E+01 | 7.90E-08 | ||||||
CMFO27 | 1.16E+02 | 6.47E+01 | 1.44E-04 | 1.35E+02 | 2.55E+01 | 1.58E-06 | 1.34E+03 | 1.66E+02 | 1.23E-07 | 7.70E+02 | 5.39E+01 | 3.37E-02 | 1.47E+02 | 3.67E+01 | 1.66E-07 | 9.61E+02 | 1.87E+01 | 1.23E-07 | |||||
CMFO28 | 8.53E+01 | 8.74E+01 | 9.22E+01 | 4.96E+01 | 7.46E+02 | 4.38E+01 | |||||||||||||||||
CMFO29 | 1.30E+02 | 7.44E+01 | 2.30E-05 | 1.46E+02 | 3.10E+01 | 2.36E-06 | 1.20E+03 | 2.88E+02 | 2.30E-05 | 7.95E+02 | 5.39E+01 | 8.36E-04 | 1.38E+02 | 3.46E+01 | 4.54E-06 | 9.51E+02 | 1.52E+01 | 2.56E-07 | |||||
CMFO30 | 9.05E+02 | 2.43E+02 | 3.37E-02 | 7.49E+02 | 5.34E+01 | 9.76E+01 | 1.56E+01 | 1.95E-03 | 9.31E+02 | 9.25E+00 |
Table 17
Statistical results of chaotic maps for tuning distance parameter $r$"
Group | Number | MFO | CMFO21 | CMFO22 | CMFO23 | CMFO24 | CMFO25 | CMFO26 | CMFO27 | CMFO28 | CMFO29 | CMFO30 |
Group1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | |
1 | 0 | 0 | 0 | 3 | 2 | 0 | 1 | 1 | 1 | 2 | ||
Group2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 5 | 0 | 0 | |
3 | 0 | 0 | 0 | 2 | 1 | 0 | 1 | 1 | 1 | 2 | ||
Group3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 2 | |
3 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 3 | 0 | 2 |
Table 18
Comparison of results for tensional/compressional spring design problem"
Design variable | GA [ | Coello& Montes [ | CPSO [ | CDE [ | MoCoDE [ | MFO28 |
0.051 480 | 0.051 989 | 0.051 728 | 0.051 609 | 0.051 718 | 0.051 705 | |
0.351 661 | 0.363 965 | 0.357 644 | 0.354 714 | 0.357 418 | 0.357 103 | |
11.632 201 | 10.890 522 | 11.244 543 | 11.410 831 | 11.248 015 | 11.266 387 | |
0.012 705 | 0.012 681 | 0.0126 747 | 0.0126 702 | 0.012 665 | 0.012 665 |
Table 19
Comparison of results for Welded beam design problem"
Design variable | GA [ | Coello & Montes [ | CPSO [ | CDE [ | MoCoDE [ | MFO28 |
0.208 800 | 0.205 986 | 0.202 369 | 0.203 137 | 0.205 730 | 0.205 730 | |
3.420 500 | 3.471 328 | 3.544 214 | 3.542 998 | 3.470 489 | 3.470 489 | |
8.997 500 | 9.020 224 | 9.048 210 | 9.033 498 | 9.036 624 | 0.205 730 | |
0.210 000 | 0.206 480 | 0.205 723 | 0.206 179 | 0.205 730 | 0.205 7302 | |
1.748 309 | 1.728 226 | 1.728 024 | 1.733 462 | 1.724 852 | 1.724 852 |
1 |
GANDOMI A H, YANG X S, ALAVI A H. Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Engineering with Computers, 2013, 29 (1): 17- 35.
doi: 10.1007/s00366-011-0241-y |
2 |
MAFARJA M M, MIRJALILI S. Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing, 2017, 260, 302- 312.
doi: 10.1016/j.neucom.2017.04.053 |
3 |
BHANDARI A K, SINGH V K, KUMAR A, et al. Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur's entropy. Expert Systems with Applications, 2014, 41 (7): 3538- 3560.
doi: 10.1016/j.eswa.2013.10.059 |
4 |
WANG H, WANG W J, SUN H, et al. A new cuckoo search algorithm with hybrid strategies for flow shop scheduling problems. Soft Computing, 2017, 21 (15): 4297- 4307.
doi: 10.1007/s00500-016-2062-9 |
5 | ZHANG X M. Parameter estimation of shallow wave equation via cuckoo search. Neural Computing & Applications, 2017, 28 (12): 4047- 4059. |
6 |
SAAD A, KHAN S A, MAHMOOD A. A multi-objective evolutionary artificial bee colony algorithm for optimizing network topology design. Swarm and Evolutionary Computation, 2018, 38, 187- 201.
doi: 10.1016/j.swevo.2017.07.010 |
7 | HOLLAND J H. Adaptation in natural and artificial systems. Massachusetts: MIT Press, 1992. |
8 | EBERHART R, KENNEDY J. A new optimizer using particle swarm theory. Proc. of the 6th International Symposium on Micro Machine and Human Science, 1995, 39- 43. |
9 | DORIGO M, MANIEZZO V, COLORNI A. Ant system: optimization by a colony of cooperating agents. IEEE Trans. on Systems Man & Cybernetics-Part B, 1996, 26 (1): 29- 41. |
10 |
STORN R, PRICE K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11 (4): 341- 359.
doi: 10.1023/A:1008202821328 |
11 | KARABOGA D, BASTURK B. An artificial bee colony (ABC) algorithm for numeric function optimization. Proc. of the IEEE Swarm Intelligence Symposium, 2006, 181- 184. |
12 | YANG X S, DEB S. Cuckoo search via levy flights. Mathematics, 2010, 210- 214. |
13 | ZONG W G, KIM J H, LOGANATHAN G V. A new heuristic optimization algorithm: harmony search. Simulation Transactions of the Society for Modeling & Simulation International, 2001, 76 (2): 60- 68. |
14 | YANG X S. A new metaheuristic bat-inspired algorithm. Computer Knowledge & Technology, 2010, 284 (12): 65- 74. |
15 | MENG X, LIU Y, GAO X, et al. A new bio-inspired algorithm: chicken swarm optimization. Proc. of the International Conference in Swarm Intelligence, 2014, 86- 94. |
16 | MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer. Advances in Engineering Software, 2014, 69 (3): 46- 61. |
17 | YANG X S. Nature-inspired metaheuristic algorithms. Frome: Luniver Press, 2008. |
18 |
MIRJALILI S, LEWIS A. The whale optimization algorithm. Advances in Engineering Software, 2016, 95, 51- 67.
doi: 10.1016/j.advengsoft.2016.01.008 |
19 | MIRJALILI S. The ant lion optimizer. Advances in Engineering Software, 2015, 83 (C): 80- 98. |
20 |
MIRJALILI S. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowledge-Based Systems, 2015, 89, 228- 249.
doi: 10.1016/j.knosys.2015.07.006 |
21 | JANGIR N, TRIVEDI I N, PANDYA M H, et al. Moth-flame optimization algorithm for solving real challenging constrained engineering optimization problems. Proc. of the IEEE Students' Conference on Electrical, Electronics and Computer Science, 2016, 1- 5. |
22 |
SAVSANI V, TAWHID M A. Non-dominated sorting moth flame optimization (NS-MFO) for multi-objective problems. Engineering Applications of Artificial Intelligence, 2017, 63, 20- 32.
doi: 10.1016/j.engappai.2017.04.018 |
23 | MUANGKOTE N, SUNAT K, CHIEWCHANWATTANA S, et al. Multilevel thresholding for satellite image segmentation with moth-flame based optimization. Proc. of the 13th International Joint Conference on Computer Science and Software Engineering, 2016, 460- 465. |
24 |
ABD EL AZIZ M, EWEESC A A, HASSANIEN A E. Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation. Expert Systems with Applications, 2017, 83, 242- 256.
doi: 10.1016/j.eswa.2017.04.023 |
25 |
WANG M J, CHEN H L, YANG B, et al. Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing, 2017, 267, 69- 84.
doi: 10.1016/j.neucom.2017.04.060 |
26 |
HASSANIEN A E, GABER T, MOKHTAR U, et al. An improved moth flame optimization algorithm based on rough sets for tomato diseases detection. Computers and Electronics in Agriculture, 2017, 136, 86- 96.
doi: 10.1016/j.compag.2017.02.026 |
27 | BUCH H, TRIVEDI I N, JANGIR P. Moth flame optimization to solve optimal power flow with non-parametric statistical evaluation validation. Cogent Engineering, 2017, 4 (1): 1286731. |
28 |
SINGH P, PRAKASH S. Optical network unit placement in fiber-wireless (FiWi) access network by moth-flame optimization algorithm. Optical Fiber Technology, 2017, 36, 403- 411.
doi: 10.1016/j.yofte.2017.05.018 |
29 |
ALLAM D, YOUSRI D A, ETEIBA M B. Parameters extraction of the three diode model for the multi-crystalline solar cell/module using moth-flame optimization algorithm. Energy Conversion and Management, 2016, 123, 535- 548.
doi: 10.1016/j.enconman.2016.06.052 |
30 | YAMANY W, FAWZY M, THARWAT A, et al. Moth-flame optimization for training multi-layer perceptrons. Proc. of the 11th International Computer Engineering Conference, 2015, 267- 272. |
31 | VIKAS, NANDA S J. Multi-objective moth flame optimization. Proc. of the International Conference on Advances in Computing, Communications and Informatics, 2016, 2470- 2476. |
32 |
DUBEY H M, PANDIT M, PANIGRAHI B K. An overview and comparative analysis of recent bio-inspired optimization techniques for wind integrated multi-objective power dispatch. Swarm and Evolutionary Computation, 2018, 38, 12- 34.
doi: 10.1016/j.swevo.2017.07.012 |
33 |
YANG L J, CHEN T L. Application of chaos in genetic algorithms. Communications in Theoretical Physics, 2002, 38 (2): 168- 172.
doi: 10.1088/0253-6102/38/2/168 |
34 | GUO Z, CHENG B, YE M, et al. Self-adaptive chaos differential evolution. Proc. of the International Conference on Natural Computation, 2006, 972- 975. |
35 |
GANDOMI A H, YUN G J, YANG X S, et al. Chaos-enhanced accelerated particle swarm optimization. Communications in Nonlinear Science and Numerical Simulation, 2013, 18 (2): 327- 340.
doi: 10.1016/j.cnsns.2012.07.017 |
36 |
GANDOMI A H, YANG X S, TALATAHARI S, et al. Firefly algorithm with chaos. Communications in Nonlinear Science and Numerical Simulation, 2013, 18 (1): 89- 98.
doi: 10.1016/j.cnsns.2012.06.009 |
37 | SAREMI S, MIRJALILI S, LEWIS A. Biogeography-based optimisation with chaos. Neural Computing & Applications, 2014, 25 (5): 1077- 1097. |
38 | HUANG L, DING S, YU S H, et al. Chaos-enhanced cuckoo search optimization algorithms for global optimization. Applied Mathematical Modelling, 2016, 40 (5/6): 3860- 3875. |
39 |
WANG G G, DEB S, GANDOMI A H, et al. Chaotic cuckoo search. Soft Computing, 2016, 20 (9): 3349- 3362.
doi: 10.1007/s00500-015-1726-1 |
40 | WU W M, LI Z X, LIN Z Y, et al. Moth-flame optimization algorithm based on chaotic crisscross operator. Computer Engineering & Applications, 2018, 54 (3): 136- 141. |
41 |
GASTON K J, BENNIE J, DAVIES T W, et al. The ecological impacts of nighttime light pollution: a mechanistic appraisal. Biological Reviews, 2013, 88 (4): 912- 927.
doi: 10.1111/brv.12036 |
42 | PADHYE N, DEB K, MITTAL P. Boundary handling approaches in particle swarm optimization. Advances in Intelligent Systems & Computing, 2013, 201, 287- 298. |
43 | LIANG J J, SUGANTHAN P N, DEB K. Novel composition test functions for numerical global optimization. Proc. of the Swarm Intelligence Symposium, 2005, 68- 75. |
44 | HE Q, WANG L. An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Engineering Applications of Artificial Intelligence, 2007, 20 (1): 89- 99. |
45 | SECTION I. Composite differential evolution with modified oracle penalty method for constrained optimization problems. Mathematical Problems in Engineering, 2014, 1, 1- 15. |
46 |
COELLO C A C. Use of a self-adaptive penalty approach for engineering optimization problems. Computers in Industry, 2000, 41 (2): 113- 127.
doi: 10.1016/S0166-3615(99)00046-9 |
47 |
COELLO C A C, MONTES E M. Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Advanced Engineering Informatics, 2002, 16 (3): 193- 203.
doi: 10.1016/S1474-0346(02)00011-3 |
48 |
HUANG F Z, WANG L, HE Q. An effective co-evolutionary differential evolution for constrained optimization. Applied Mathematics and Computation, 2007 186 (1): 340- 356.
doi: 10.1016/j.amc.2006.07.105 |
[1] | Baiquan LU, Chenlong NI, Zhongwei ZHENG, Tingzhang LIU. A global optimization algorithm based on multi-loop neural network control [J]. Journal of Systems Engineering and Electronics, 2019, 30(5): 1007-1024. |
[2] | Zhuoran ZHANG, Changqiang HUANG, Hanqiao HUANG, Shangqin TANG, Kangsheng DONG. An optimization method: hummingbirds optimization algorithm [J]. Journal of Systems Engineering and Electronics, 2018, 29(2): 386-404. |
[3] | Ye Tian and Zhimao Lu. S-box: six-dimensional compound hyperchaotic map and artificial bee colony algorithm [J]. Systems Engineering and Electronics, 2016, 27(1): 232-. |
[4] | Aijun Zhu, Chuanpei Xu, Zhi Li, JunWu, and Zhenbing Liu. Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC [J]. Journal of Systems Engineering and Electronics, 2015, 26(2): 317-328. |
[5] | Yu Xue,Yi Zhuang, Tianquan Ni, Siru Ni, and Xuezhi Wen. Self-adaptive learning based discrete differential evolution algorithm for solving CJWTA problem [J]. Journal of Systems Engineering and Electronics, 2014, 25(1): 59-68. |
[6] | Yong Liu and Liang Ma. Improved gravitational search algorithm based on free search differential evolution [J]. Journal of Systems Engineering and Electronics, 2013, 24(4): 690-698. |
[7] | Chaohua Dai1,Weirong Chen1,Yonghua Song2,and Yunfang Zhu3. Seeker optimization algorithm:a novel stochastic search algorithm for global numerical optimization [J]. Journal of Systems Engineering and Electronics, 2010, 21(2): 300-311. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||