Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (6): 1119-1131.doi: 10.21629/JSEE.2019.06.08
• Defence Electronics Technology • Previous Articles Next Articles
Haowei ZHANG1,*(), Junwei XIE1(), Junpeng SHI2(), Zhaojian ZHANG3()
Received:
2019-01-03
Online:
2019-12-20
Published:
2019-12-25
Contact:
Haowei ZHANG
E-mail:zhw_xhzf@163.com;xjw_xjw123@163.com;15661081720@163.com;zzj554038@163.com
About author:
ZHANG Haowei was born in 1992. He received his bachelor and master degrees from the Air and Missile Defense College, Air Force Engineering University, Xi'an, Shaanxi, China, in 2014 and 2016, respectively. He is currently a doctoral student in the Air and Missile Defense College with the same university. His research interests include multifunction radar resource management and intelligent scheduling. E-mail: Supported by:
Haowei ZHANG, Junwei XIE, Junpeng SHI, Zhaojian ZHANG. Antenna selection in MIMO radar with collocated antennas[J]. Journal of Systems Engineering and Electronics, 2019, 30(6): 1119-1131.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
FISHLER E, HAIMOVICH A M, BLUM R S, et al. Spatial diversity in radars-models and detection performance. IEEE Trans. on Signal Processing, 2006, 54 (3): 823- 838.
doi: 10.1109/TSP.2005.862813 |
2 |
STOICA P, LI J. MIMO radar with colocated antennas. IEEE Signal Processing Magazine, 2007, 24 (5): 106- 114.
doi: 10.1109/MSP.2007.904812 |
3 | ZHANG H W, XIE J W, GE J A, et al. Optimization model and online task interleaving scheduling algorithm for MIMO radar. Computers & Industrial Engineering, 2019, 127 (1): 865- 874. |
4 | ZHANG H W, XIE J W, HU Q Y, et al. A hybrid DPSO with Levy flight for scheduling MIMO radar tasks. Applied Soft Computing, 2018, 71 (11): 242- 254. |
5 |
XU L Z, LI J, STOICA P. Target detection and parameter estimation for MIMO radar systems. IEEE Trans. on Aerospace Electronic Systems, 2008, 44 (3): 927- 939.
doi: 10.1109/TAES.2008.4655353 |
6 |
YU Y, SUN S Q, MADAN R N, et al. Power allocation and waveform design for the compressive sensing based MIMO radar. IEEE Trans. on Aerospace Electronic Systems, 2014, 50 (2): 898- 909.
doi: 10.1109/TAES.2014.130088 |
7 |
BEKKERMAN I, TABRIKIAN J. Target detection and localization using MIMO radars and sonars. IEEE Trans. on Signal Processing, 2006, 54 (10): 3873- 3883.
doi: 10.1109/TSP.2006.879267 |
8 |
LI J, XU L Z, STOICA P, et al. Range compression and waveform optimization for MIMO radar:a Cramer-Rao bound based study. IEEE Trans. on Signal Processing, 2008, 56 (1): 218- 232.
doi: 10.1109/TSP.2007.901653 |
9 |
GORJI A A, KIRUBARAJAN T, THARMARSSA R. Optimal antenna allocation in MIMO radars with collocated antennas. IEEE Trans. on Aerospace Electronic Systems, 2014, 50 (1): 542- 557.
doi: 10.1109/TAES.2013.120384 |
10 |
GORJI A A, THARMARASA R, BLAIR W D, et al. Multiple unresolved target localization and tracking using collocated MIMO radars. IEEE Trans. on Aerospace Electronic Systems, 2012, 48 (3): 2498- 2517.
doi: 10.1109/TAES.2012.6237605 |
11 |
YAN J K, JIU B, LIU H W, et al. Prior knowledge based simultaneous multibeam power allocation algorithm for cognitive multiple targets tracking in clutter. IEEE Trans. on Signal Processing, 2015, 63 (2): 512- 527.
doi: 10.1109/TSP.2014.2371774 |
12 |
YAN J K, LIU H W, JIU B, et al. Simultaneous multibeam resource allocation scheme for multiple target tracking. IEEE Trans. on Signal Processing, 2015, 63 (12): 3110- 3122.
doi: 10.1109/TSP.2015.2417504 |
13 | JIN M, LIAO G S, LI J. Joint DOD and DOA estimation for bistatic MIMO radar. Signal Processing, 2009, 89 (2): 244- 251. |
14 |
TICHAVSKY P, MURAVCHIK C, NEHORAI A. Posterior Cramer-Rao bounds for discrete-time nonlinear filtering. IEEE Trans. on Signal Processing, 1998, 46 (5): 1386- 1396.
doi: 10.1109/78.668800 |
15 |
XIE M C, YI W, KIRUBARAJAN T. Receive-beam resource allocation for multiple target tracking with distributed MIMO radars. IEEE Trans. on Aerospace Electronic Systems, 2018, 54 (5): 2421- 2436.
doi: 10.1109/TAES.2018.2818579 |
16 |
BISHOP A N, FIDAN B, ANDERSON B D, et al. Optimality analysis of sensor-target localization geometries. Automatica, 2010, 46 (3): 479- 492.
doi: 10.1016/j.automatica.2009.12.003 |
17 |
THARMARASA R, KIRUBARAJAN T, HERNANDEZ M L. Large-scale optimal sensor array management for multitarget tracking. IEEE Trans. on Systems, Man, and Cybernetics-Part C:Applications and Reviews, 2007, 37 (5): 803- 814.
doi: 10.1109/TSMCC.2007.901003 |
18 |
THARMARASA R, KIRUBARAJAN T, HERNANDEZ M L, et al. PCRLB-based multisensor array management for multitarget tracking. IEEE Trans. on Aerospace Electronic Systems, 2007, 43 (2): 539- 555.
doi: 10.1109/TAES.2007.4285352 |
19 | GODRICH H, PETROPULU A, POOR H V. A combinatorial optimization framework for subset selection in distributed multiple-radar architectures. Proc. of the IEEE International Conference on Acoustics, Speech, Signal Processing, 2011, 2796- 2799. |
20 |
GODRICH H, PETROPULU A, POOR H V. Sensor selection in distributed multiple-radar architectures for localization:a knapsack problem formulation. IEEE Trans. on Signal Processing, 2012, 60 (1): 247- 260.
doi: 10.1109/TSP.2011.2170170 |
21 |
HE Q, BLUM R S, GODRICH H, et al. Target velocity estimation and antenna placement for MIMO radar with widely separated antennas. IEEE Journal of Selected Topics in Signal Processing, 2010, 4 (1): 79- 100.
doi: 10.1109/JSTSP.2009.2038974 |
22 | SONG X Y, ZHENG N E, BAI T. Resource allocation schemes for multiple targets tracking in distributed MIMO radar systems. International Journal of Antennas and Propagation, 2017, 7241281. |
23 |
SONG X Y, ZHENG N E, YAN S H, et al. A joint resource allocation method for multiple targets tracking in distributed MIMO radar systems. EURASIP Journal on Advances in Signal Processing, 2018.
doi: 10.1155/2017/7241281 |
24 | HAYKIN S, ZIA A, XUE Y, et al. Control theoretic approach to tracking radar:first step towards cognition. Digital Signal Processing, 2011, 21 (6): 576- 585. |
25 | ZHANG H W, XIE J W, SHI J P, et al. Joint beam and waveform selection for the MIMO radar target tracking. Signal Processing, 2019, 156 (3): 31- 40. |
26 |
CHAVALI P, NEHORAI A. Scheduling and power allocation in a cognitive radar network for multiple-target tracking. IEEE Trans. on Signal Processing, 2012, 60 (2): 715- 729.
doi: 10.1109/TSP.2011.2174989 |
27 |
GARCIA N, HAIMOVICH A M, COULON M, et al. Resource allocation in MIMO radar with multiple targets for non-coherent localization. IEEE Trans. on Signal Processing, 2014, 62 (10): 2656- 2666.
doi: 10.1109/TSP.2014.2315169 |
28 | MARTELLO S, TOTH P. Knapsack problems:algorithms and computer implementations. New York: Wiley, 1990. |
29 |
JOSHI S, BOYD S. Sensor selection via convex optimization. IEEE Trans. on Signal Processing, 2009, 57 (2): 451- 462.
doi: 10.1109/TSP.2008.2007095 |
30 |
ARASARATNAM I, HAYKIN S, HURD T R. Cubature Kalman filtering for continuous-discrete systems:theory and simulations. IEEE Trans. on Signal Processing, 2010, 58 (10): 4977- 4993.
doi: 10.1109/TSP.2010.2056923 |
31 | CHALLA S, MORELANDE M R, MUSICKI D, et al. Fundamentals of object tracking. Cambridge, UK: Cambridge University Press, 2011. |
32 | GLASS J D, SMITH L D. MIMO radar resource allocation using posterior Cramer-Rao lower bounds. Proc. of the IEEE Aerospace Conference, 2011, 1- 9. |
33 | BOYD S, VANDENBERGHE L. Convex optimization. New York: Cambridge University Press, 2004. |
34 | KELLERER H, PFERSCHY U, PISINGER D. Knapsack problems. Berlin: Springer, 2004. |
35 | GOLUB G H, VAN LOAN C F. Matrix computations. 3rd ed. Baltimore:Johns Hopkins University Press, 1996. |
36 | ZHANG H W, LIU W J, XIE J W, et al. Space-time allocation for Trans.it beams in collocated MIMO radar. Signal Processing, 2019, 164 (11): 151- 162. |
37 | ZHANG H W, XIE J W, SHI J P, et al. Sensor scheduling and resource allocation in distributed MIMO radar for joint target tracking and detection. IEEE Access, 2019, 7 (1): 62387- 62400. |
38 | ZHANG H W, XIE J W, GE J A, et al. A hybrid adaptively genetic algorithm for task scheduling problem in the phased array radar. European Journal of Operational Research, 2019, 272 (3): 868- 878. |
39 | ZHANG H W, XIE J W, GE J A, et al. An entropy-based PSO for DAR task scheduling problem. Applied Soft Computing, 2018, 73 (12): 862- 873. |
40 | ZHANG H W, XIE J W, LU W L, et al. Novel ranking method for intuitionistic fuzzy values based on information fusion. Computers & Industrial Engineering, 2019, 133 (6): 139- 152. |
[1] | Tao WU, Zhenghong DENG, Xiaoxiang HU, Ao LI, Jiwei XU. DOA estimation of incoherently distributed sources using importance sampling maximum likelihood [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 845-855. |
[2] | Ying CHEN, Xiang WANG, Zhitao HUANG. Underdetermined DOA estimation via multiple time-delay covariance matrices and deep residual network [J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1354-1363. |
[3] | Chen TIAN, Yang PEI, Peng HOU, Qian ZHAO. Multi-target tracking algorithm based on PHD filter against multi-range-false-target jamming [J]. Journal of Systems Engineering and Electronics, 2020, 31(5): 859-870. |
[4] | Yang SU, Ting CHENG, Zishu HE, Xi LI, Yanxi LU. Adaptive resource management for multi-target tracking in co-located MIMO radar based on time-space joint allocation [J]. Journal of Systems Engineering and Electronics, 2020, 31(5): 916-927. |
[5] | Mahmoudreza HADAEGH, Hamid KHALOOZADEH, Mohammadtaghi BEHESHTI. Augmented input estimation in multiple maneuvering target tracking [J]. Journal of Systems Engineering and Electronics, 2019, 30(5): 841-851. |
[6] | Fenggang Yan, Yi Shen, Ming Jin, and Xiaolin Qiao. Computationally efficient direction finding using polynomial rooting with reduced-order and real-valued computations [J]. Systems Engineering and Electronics, 2016, 27(4): 739-. |
[7] | Hongqi Yu, David Day-Uei Li, Kun Zhang, Jietao Diao, and Haijun Liu. Wideband direction-of-arrival estimation based on cubic spline function [J]. Journal of Systems Engineering and Electronics, 2015, 26(4): 688-. |
[8] | Lei Shen, Zhiwen Liu, Xiaoming Gou, and Yougen Xu. Polynomial-rooting based fourth-order MUSIC for direction-of-arrival estimation of noncircular signals [J]. Journal of Systems Engineering and Electronics, 2014, 25(6): 942-948. |
[9] | Xiang Wang, Zhitao Huang, and Yiyu Zhou. Underdetermined DOA estimation and blind separation of non-disjoint sources in time-frequency domain based on sparse representation method [J]. Journal of Systems Engineering and Electronics, 2014, 25(1): 17-25. |
[10] | Jun Liu, Zheng Liu, and Qin Liu. Direction and polarization estimation for coherent sources using vector sensors [J]. Journal of Systems Engineering and Electronics, 2013, 24(4): 600-605. |
[11] | Huang Senhua, Qiu Ling & Shi Lin. Zero-forcing beamforming with receiver antenna selection in downlink multi-antenna multi-user system [J]. Journal of Systems Engineering and Electronics, 2008, 19(6): 1258-1263. |
[12] | Yang Haifen & Li Guangjun. Novel antenna selection algorithm based on Tanimoto similarity [J]. Journal of Systems Engineering and Electronics, 2008, 19(3): 624-627. |
[13] | Ba Hongxin, Cao Lei, He Xinyi & Cheng Qun. Modified joint probabilistic data association with classification-aided for multitarget tracking [J]. Journal of Systems Engineering and Electronics, 2008, 19(3): 434-439. |
[14] | Zhu Yaolin, Fang Yong & Wang Min. Hybrid transmit antenna selection and maximal-ratio transmission systems [J]. Journal of Systems Engineering and Electronics, 2007, 18(2): 229-235. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||