Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (6): 1096-1109.doi: 10.21629/JSEE.2019.06.06
• Defence Electronics Technology • Previous Articles Next Articles
Shuzhen WANG1(), Yang FANG2(), Jin'gang ZHANG3,4,*(), Mingshi LUO5(), Qing LI6()
Received:
2018-08-22
Online:
2019-12-20
Published:
2019-12-25
Contact:
Jin'gang ZHANG
E-mail:shuzhenwang@xidian.edu.cn;fang_yang122@vip.sina.com;zhangjg@ucas.ac.cn;luomsh@xsyu.edu.cn;liqing@telfri.net
About author:
WANG Shuzhen was born in 1978. He received his Ph.D. degree from School of Electro-Mechanical Engineering, Xidian University in 2005. He is currently a professor in the School of Computer Science and Technology, Xidian University. His research interests include radar imaging, machine learning, and computer vision. E-mail: Supported by:
Shuzhen WANG, Yang FANG, Jin'gang ZHANG, Mingshi LUO, Qing LI. Near-field 3D imaging approach combining MJSR and FGG-NUFFT[J]. Journal of Systems Engineering and Electronics, 2019, 30(6): 1096-1109.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2
Parameters of InSAR imaging system in anechoic chamber"
Parameter | Value |
Center frequency/GHz | 10 |
Bandwidth/GHz | 4 |
Interval of frequency sampling/(MHz | 40 (Sparse sampling) |
Length of aperture/m | 1 |
Antenna scanning interval/(m | 0.02 (Sparse sampling) |
Baseline length/m | 0.02 |
Distance between antenna and target/m | 2 |
Table 3
Comparison of positional information of typical scattering points"
Approach | Target 1 | Target 2 | Target 3 |
Original coordinate | (0.012 5, 0.268 8, 0) | (0.143 8, 0.243 8, 0) | (0.118 8, 0.168 8, 0.046 7) |
Traditional method | (0, 0.25, 0.65) | (0.119, 0.229, 0.15) | (0.12, 0.11, 0.15) |
Proposed method | (0.012, 0.266, 0) | (0.141, 0.241, 0.02) | (0.117 3, 0.16, 0.046) |
Table 4
Comparison of scatter point position information extracted by different imaging methods"
Approach | Target 1 | Target 2 | Target 3 | Target 4 | Target 5 |
Theoretical coordinate | (-0.2, -0.2, -0.2) | (0.2, -0.2, -0.2) | (0, 0, 0) | (-0.2, 0.2, 0.2) | (0.2, 0.2, 0.2) |
Proposed method | (-0.2, -0.2, -0.21) | (0.21, -0.2. -0.2) | (0, 0, 0) | (-0.2, 0.2, 0.2) | (0.2, 0.2, 0.19) |
Traditional method | (-0.19, -0.2, 0.2) | (0.2, -0.18, -0.2) | (0.03, -0.01, 0.1) | (-0.2, 0.2, 0.19) | (0.25, 0.19, -0.2) |
(-0.19, -0.21, -0.2) | — | (0.03, 0.01, -0.1) | — | (0.25, 0.21, 0.2) |
1 |
FANG Y, WANG B P, SUN C, et al. Near field 3-D imaging approach for joint high-resolution imaging and phase error correction. Journal of Systems Engineering and Electronics, 2017, 28 (2): 199- 211.
doi: 10.21629/JSEE.2017.02.01 |
2 | YANG X H, ZHENG Y R, GHASR T, et al. Microwave imaging from sparse measurements for near-field synthetic aperture radar. IEEE Trans. on Instrumentation & Measurement, 2017, 66 (10): 2680- 2692. |
3 | SHEEN D M, MCMARKIN D L. Three-dimensional radar imaging techniques and systems for near-field applications. Proc. of SPIE, Radar Sensor Technology XX, 2016, 98290V. |
4 |
ZHANG Y, DENG B, YANG Q, et al. Near-field three-dimensional planar millimeter-wave holographic imaging by using frequency scaling algorithm. Sensors, 2017, 17 (10): 1- 14.
doi: 10.1109/JSEN.2017.2685484 |
5 |
SHEEN D M, MCMARKIN D L, HALL T E. Near-field three-dimensional radar imaging techniques and applications. Applied Optics, 2010, 49 (19): 83- 93.
doi: 10.1364/AO.49.000E83 |
6 | LI S Y, ZHU B C, SUN H J. NUFFT-based near-field imaging technique for far-field radar cross section calculation. IEEE Antennas & Wireless Propagation Letters, 2010, 9 (1): 550- 553. |
7 |
ZHU R Q, ZHOU J X, JIANG G, et al. Range migration algorithm for near-field MIMO-SAR imaging. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (12): 2280- 2284.
doi: 10.1109/LGRS.2017.2761838 |
8 | FORTUNY J. Efficient algorithms for three-dimensional near-field synthetic aperture radar imaging. Karlsruher, Germany: University of Karslruhe, 2001. |
9 | DEMIRCI S, CETINKAYA H, TEKBAS M, et al. Back-projection algorithm for ISAR imaging of near-field concealed objects. Proc. of the URSI General Assembly and Scientific Symposium, 2011, 1- 4. |
10 |
LI X, BOND E J, VAN VEEN B D. An overview of ultra-band microwave imaging via space-time beamforming for early-stage breast-cancer detection. IEEE Antennas and Propagation Magazine, 2005, 47 (1): 19- 34.
doi: 10.1109/MAP.2005.1436217 |
11 |
KAN Y Z, ZHU Y F, TANG L, et al. FGG-NUFFT-based method for near-field 3-D imaging using millimeter waves. Sensors, 2016, 16 (9): 1- 15.
doi: 10.1109/JSEN.2016.2532218 |
12 |
KAJBAF H, CASE J T, YANG Z L, et al. Compressed sensing for SAR-based wideband three-dimensional microwave imaging system using non-uniform fast Fourier Trans.orm. IET Radar, Sonar and Navigation, 2013, 7 (6): 658- 670.
doi: 10.1049/iet-rsn.2012.0149 |
13 |
LIU Y B, LI N, WANG R, et al. Achieving high-quality three-dimensional InISAR imaging of maneuvering via super-resolution ISAR imaging by exploiting sparseness. IEEE Geoscience and Remote Sensing Letters, 2014, 11 (4): 828- 832.
doi: 10.1109/LGRS.2013.2279402 |
14 |
ZHANG Q, YEO T S, DU G, et al. Estimation of three-dimensional motion parameters in interferometric ISAR imaging. IEEE Geoscience and Remote Sensing Letters, 2004, 42 (2): 292- 300.
doi: 10.1109/TGRS.2003.815669 |
15 |
DONOHO D L. Compressed sensing. IEEE Trans. on Information Theory, 2006, 52 (4): 1289- 1306.
doi: 10.1109/TIT.2006.871582 |
16 | CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. on Information Theory, 2006, 52 (2): 489- 509. |
17 | BARANIUK R, STEEGHS P. Compressive radar imaging. Proc. of the IEEE Radar Conference, 2007, 128- 133. |
18 |
LI S Y, ZHAO G Q, LI H M, et al. Near-field radar imaging via compressive sensing. IEEE Trans. on Antennas and Propagation, 2015, 63 (2): 828- 833.
doi: 10.1109/TAP.2014.2381262 |
19 |
AUSTIN C D, ERTIN E, MOSES R L. Sparse signal methods for 3-D radar imaging. IEEE Journal of Selected Topics in Signal Processing, 2011, 5 (3): 408- 423.
doi: 10.1109/JSTSP.2010.2090128 |
20 |
YAIR R, ADRIAN S. Compressed imaging with a separable sensing operator. IEEE Signal Processing Letters, 2009, 16 (6): 449- 452.
doi: 10.1109/LSP.2009.2017817 |
21 |
YANG J G, THOMPSON J, HUANG X T, et al. Segmented reconstruction for compressed sensing SAR imaging. IEEE Trans. on Geoscience Remote Sensing, 2013, 51 (7): 4214- 4225.
doi: 10.1109/TGRS.2012.2227060 |
22 |
LI S D, CHEN W F, YANG J, et al. A fast complex linearized Bregman iteration algorithm and its application in ISAR imaging. Scientia Sinica Informationis, 2015, 45 (9): 1179- 1196.
doi: 10.1360/N112014-00316 |
23 |
SUN S L, ZHU G F, JIN T. Novel methods to accelerate CS radar imaging by NUFFT. IEEE Trans. on Geoscience and Remote Sensing, 2015, 53 (1): 557- 566.
doi: 10.1109/TGRS.2014.2325492 |
24 |
FANG J, XU Z B, ZHANG B C, et al. Fast compressed sensing SAR imaging based on approximated observation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7 (1): 352- 363.
doi: 10.1109/JSTARS.2013.2263309 |
25 |
SHEEN D M, MCMARKIN D L, HALL T E. Three-dimensional millimeter-wave imaging for concealed weapon detection. IEEE Trans. on Microwave Theory and Techniques, 2001, 49 (9): 1581- 1592.
doi: 10.1109/22.942570 |
26 |
DUTT A, ROKHLIN V. Fast Fourier Trans.orms for nonequispaced data. SIAM Journal on Scientific Computing, 1993, 14 (6): 1368- 1393.
doi: 10.1137/0914081 |
27 |
LEE G J Y. Accelerating the nonuniform fast Fourier Trans.orm. SIAM Review, 2004, 46 (3): 443- 454.
doi: 10.1137/S003614450343200X |
28 | CANDÈS E J. The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathématique, 2008, 364(9-10): 589-592. (in French) |
[1] | Junqiu ZHANG, Yong WANG, Xiaofei LU. Distributed inverse synthetic aperture radar imaging of ship target with complex motion [J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1325-1337. |
[2] | Ruifeng FAN, Xunhe YIN, Zhenfei LIU, Hak Keung LAM. Compensated methods for networked control system with packet drops based on compressed sensing [J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1539-1556. |
[3] | Xiangyang LIU, Bingpeng ZHANG, Wei CAO, Wenjia XIE. Sparse three-dimensional imaging for forward-looking array SAR using spatial continuity [J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 417-424. |
[4] | Jiansheng HU, Zuxun SONG, Shuxia GUO, Qian ZHANG, Dongdong SHUI. Sparse channel recovery with inter-carrier interference self-cancellation in OFDM [J]. Journal of Systems Engineering and Electronics, 2018, 29(4): 676-683. |
[5] | Mingjiu Lyu, Shaodong Li, Wenfeng Chen, Jun Yang, and Xiaoyan Ma. Fast ISAR imaging method based on scene segmentation [J]. Journal of Systems Engineering and Electronics, 2017, 28(6): 1078-1088. |
[6] | Yang Fang, Baoping Wang, Chao Sun, Zuxun Song, and Shuzhen Wang. Near field 3-D imaging approach for joint high-resolution imaging and phase error correction [J]. Systems Engineering and Electronics, 2017, 28(2): 199-211. |
[7] | Lin Zhang and Yicheng Jiang. Imaging algorithm of multi-ship motion target based on compressed sensing [J]. Systems Engineering and Electronics, 2016, 27(4): 790-. |
[8] | Xiaoping Shi and Jie Zhang. Reconstruction and transmission of astronomical image based on compressed sensing [J]. Systems Engineering and Electronics, 2016, 27(3): 680-690. |
[9] | Jihong Liu, Shaokun Xu, Xunzhang Gao, and Xiang Li. Novel imaging methods of stepped frequency radar based on compressed sensing [J]. Journal of Systems Engineering and Electronics, 2012, 23(1): 47-56. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||