1 |
MARK N, MUMFORD D. The 2.1-d sketch. Proc. of the IEEE International Conference on Computer Vision, 1990: 138-144.
|
2 |
YU C C, LIU Y J, WU M T, et al. A global energy optimization framework for 2.1D sketch extraction from monocular images. Graphical Models, 2014, 76 (5): 507- 521.
doi: 10.1016/j.gmod.2014.03.015
|
3 |
HONG Z, MEI X, TAO D. Dual-force metric learning for robust distracter-resistant tracker. Proc. of the European Conference on Computer Vision, 2012: 513-527.
|
4 |
ZHOU Y, BAI X, LIU W Y, et al. Fusion with diffusion for robust visual tracking. Advances in Neural Information Processing Systems, 2012, 4, 2978- 2986.
|
5 |
KARSCH K, LIU C, KANG S B. Depth extraction from video using non-parametric sampling. Proc. of the European Conference on Computer Vision, 2012: 775-788.
|
6 |
CHEN X, LI Q, ZHAO D, et al. Occlusion cues for image scene layering. Computer Vision and Image Understanding, 2013, 117 (1): 42- 55.
doi: 10.1016/j.cviu.2012.10.001
|
7 |
GOULD S, FULTON R, KOLLER D. Decomposing a scene into geometric and semantically consistent regions. Proc. of the International Conference on Computer Vision, 2010: 1-8.
|
8 |
LI F F, PERONA P. A bayesian hierarchical model for learning natural scene categories. Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005: 524-531.
|
9 |
MA J, ZHOU H, ZHAO J, et al. Robust feature matching for remote sensing image registration via locally linear transforming. IEEE Trans. on Geoscience and Remote Sensing, 2015, 53 (12): 6469- 6481.
doi: 10.1109/TGRS.2015.2441954
|
10 |
MA J, QIU W, ZHAO J, et al. Robust L2E estimation of transformation for non-rigid registration. IEEE Trans. on Signal Processing, 2015, 63 (5): 1115- 1129.
doi: 10.1109/TSP.2014.2388434
|
11 |
MING A, WU T, MA J, et al. Monocular depth-ordering reasoning with occlusion edge detection and couple layers inference. IEEE Intelligent Systems, 2016, 31 (2): 54- 65.
doi: 10.1109/MIS.2015.94
|
12 |
ACHANTA R, SUSSTRUNK S. Superpixels and polygons using simple non-iterative clustering. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4895-4904.
|
13 |
HOIEM D, EFROS A A, HEBERT M. Recovering occlusion boundaries from an image. International Journal of Computer Vision, 2011, 91 (3): 328- 346.
|
14 |
FOWLKES C C, MARTIN D R, MALIK J. Local figure-ground cues are valid for natural images. Journal of Vision, 2007, 7 (8): 1- 9.
doi: 10.1167/7.8.1
|
15 |
ARBELAEZ P, MAIRE M, FOWLKES C, et al. Contour detection and hierarchical image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2011, 33 (5): 898- 916.
doi: 10.1109/TPAMI.2010.161
|
16 |
AMER M R, YOUSEFI S, RAICH R, et al. Monocular extraction of 2.1d sketch using constrained convex optimization. International Journal of Computer Vision, 2015, 112 (1): 23- 42.
|
17 |
JIA Z. A learning-based framework for depth ordering. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2012: 294-301.
|
18 |
ZHOU Y, MA J, MING A, et al. Learning training samples for occlusion edge detection and its application in depth ordering inference. Proc. of the 24th International Conference on Pattern Recognition, 2018, DOI: 10.1109/ICPR.2018.8545622.
|
19 |
YU Z, FENG C, LIU M Y, et al. Casenet: deep category-aware semantic edge detection. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1-10.
|
20 |
PENG W, YUILLE A. Doc: deep occlusion estimation from a single image. Proc. of the European Conference on Computer Vision, 2016: 546-561.
|
21 |
WANG G X, LIANG X H, LI F W B. Doobnet: deep object occlusion boundary detection from an image. Computer Vision and Pattern Recognition, 2018, arXiv:1806.03772.
|
22 |
HE L, WANG G, HU Z. Learning depth from single images with deep neural network embedding focal length. IEEE Trans. on Image Processing, 2018, 27 (9): 4676- 4689.
doi: 10.1109/TIP.2018.2832296
|
23 |
FU H, GONG M, WANG C, et al. Deep ordinal regression network for monocular depth estimation. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 2002-2011.
|
24 |
XU D, WANG W, TANG H, et al. Structured attention guided convolutional neural fields for monocular depth estimation. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3917-3925.
|
25 |
XU D, OUYANG W, WANG X, et al. Pad-net: multi-tasks guided prediction-and-distillation network for simultaneous depth estimation and scene parsing. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, DOI: 10.1109/CVPR.2018.00077.
|
26 |
XU D, RICCI E, OUYANG W, et al. Multi-scale continuous CRFs as sequential deep networks for monocular depth estimation. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5354-5362.
|
27 |
LIU M Y, TUZEL O, RAMALINGAM S, et al. Entropy rate superpixel segmentation. Proc. of the Computer Vision and Pattern Recognition, 2011: 2097-2104.
|
28 |
ZHANG Y, LI X, GAO X, et al. A simple algorithm of superpixel segmentation with boundary constrain. IEEE Trans. on Circuits & Systems for Video Technology, 2017, 27 (7): 1502- 1514.
|
29 |
SHEN J, DU Y, WANG W, et al. Lazy random walks for superpixel segmentation. IEEE Trans. on Image Processing, 2014, 23 (4): 1451- 1462.
|
30 |
ACHANTA R, SUSSTRUNK S. Superpixels and polygons using simple non-iterative clustering. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4895-4904.
|
31 |
ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2012, 34 (11): 2274- 2282.
doi: 10.1109/TPAMI.2012.120
|
32 |
CHENG M M, WARRELL J, LIN W Y, et al. Efficient salient region detection with soft image abstraction. Proc. of the IEEE International Conference on Computer Vision, 2014: 1529-1536.
|
33 |
JIA Z, GALLAGHER A, CHANG Y J, et al. A learning-based framework for depth ordering. Proc. of the Computer Vision and Pattern Recognition, 2012, DOI: 10.1109/CVPR.2012.6247688.
|
34 |
SILBERMAN N, HOIEM D, KOHLI P, et al. Indoor segmentation and support inference from RGBD images. Proc. of the European Conference on Computer Vision, 2012: 1-14.
|
35 |
STUTZ D, HERMANS A, LEIBE B. Superpixels: an evaluation of the state-of-the-art. Computer Vision and Image Understanding, 2017: S1077314217300589.
|
36 |
LI Z, CHEN J. Superpixel segmentation using linear spectral clustering. Proc. of the Computer Vision and Pattern Recognition, 2015: 1356-1363.
|
37 |
LIU M Y, TUZEL O, RAMALINGAM S, et al. Entropy rate superpixel segmentation. Proc. of the Computer Vision and Pattern Recognition, 2011: 2097-2104.
|