Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (5): 1007-1024.doi: 10.21629/JSEE.2019.05.17
• Control Theory and Application • Previous Articles Next Articles
Baiquan LU(), Chenlong NI*(
), Zhongwei ZHENG(
), Tingzhang LIU(
)
Received:
2018-12-13
Online:
2019-10-08
Published:
2019-10-09
Contact:
Chenlong NI
E-mail:lbq123188@aliyun.com;chalone0808@icloud.com;zw.zheng2@gmail.com;liutzh@staff.shu.edu.cn
About author:
LU Baiquan was born in 1963. He received his Ph.D. degree in thermal engineering from Tsinghua University in 1997. He is now an associate professor at School of Mechatronic Engineering and Automation, Shanghai University. His research interests include computational intelligence and nonlinear system control. E-mail: Supported by:
Baiquan LU, Chenlong NI, Zhongwei ZHENG, Tingzhang LIU. A global optimization algorithm based on multi-loop neural network control[J]. Journal of Systems Engineering and Electronics, 2019, 30(5): 1007-1024.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Test functions"
Function | Dimension | Feasible region | Global optimum value |
Table 2
Initial values of the parameters"
Function | Parameter of the filled function | ||||
1e-3/1e-3/1e-3/1e-3/1e-3 | 1e-3/1e-5/1e-4 | 3.3e-4 | 10 000/3 000/100 | ||
0.01/0.01/0.01/0.01/0.01 | 1e-3/1e-1/1e-5 | 2e-4 | 50 000/6 000/100 | ||
1/1/1/1e-6/1 | 1.0/1e+2/1e-2 | 7e-6 | 10 000/2 500/80 | ||
0.01/0.01/0.01/0.01/0.01 | 1/1e-6/1e-5 | 1.2e-4 | 10 000/3 000/150 | ||
0.1/0.1/0.1/1e-5/0.1 | 2e-1/1e-2/1e-4 | 1e-4 | 10 000/3 000/80 | ||
0.01/0.01/0.01/1e-4/0.1 | 5e-2/1e-1/2e-4 | 1e-3 | 1 000/180/60 | ||
1e-2/1e-2/1e-2/1e-5/0.1 | 7e-4/1e-5/1e-4 | 2e-4 | 40 000/6 000/100 | ||
1e-2/1e-2/1e-2/1e-4/1e-2 | 9e-3/1e-5/1e-2 | 1e-3 | 10 000/120/60 | ||
1e-2/1e-2/1e-2/1e-4/1e-2 | 1e-2/1e-2/1e-3 | 1e-4 | 6 000/2 000/60 | ||
0.1/0.1/0.1/0.01/0.1 | 9e-5/1e-4/1e-4 | 1e-4 | 20 000/4 000/60 | ||
0.1/0.1/0.1/0.1/0.1 | 9e-2/1e-3/1e-4 | 2e-1 | 1 500/200/60 | ||
0.1/0.1/0.1/0.1/0.1 | 1e-3/0.01/1e-4 | 1e-2 | 140/500/60 | ||
0.1/0.1/0.1/0.1/0.1 | 5.8/1e-4/1e-4 | 1e-3 | 3 000/1 000/100 | ||
0.1/0.1/0.1/0.1/0.1 | 8.8e-4/8.5e-4/9e-4 | 5e-3 | 50 000/1 500/250 | ||
0.1/0.1/0.1/0.1/0.1 | 9.5e-4/8.8e-4/5e-4 | 5e-3 | 35 000/1 800/300 | ||
0.01/0.01/0.01/1e-4/0.01 | 1e-5/1e-5/1e-5 | 1e-5 | 20 000/2 000/350 | ||
0.1/0.1/0.1/0.1/0.1 | 1e-5/1e-5/2e-5 | 3e-4 | 10 000/600/250 | ||
0.1/0.1/0.1/0.1/0.1 | 1e-5/4e-3/1e-3 | 5e-3 | 10 000/5 000/80 |
Table 3
Statistical results of simulations for $\mathit{\boldsymbol{F_{1}}}$–$\mathit{\boldsymbol{F_{17}}}$"
Function | Average value | Best value | Worst value | Confidence interval | CPU time/s | ||
0 | 0 | 0 | 0 | 30/30 | 33.3 | 1e-15 | |
0 | 0 | 0 | 0 | 30/30 | 82.1 | 1e-15 | |
1.48e-17 | 0 | 3.33e-16 | 1.48e-17 | 30/30 | 15.5 | 1e-15 | |
5.66e-11 | 1.33e-12 | 3.02e-10 | 5.66e-11 | 30/30 | 27.5 | 1e-9 | |
5.30e-18 | 1.50e-19 | 2.60e-17 | 5.30e-18 | 30/30 | 32.5 | 1e-15 | |
-78.332 331 41 | -78.332 331 41 | -78.332 331 41 | -78.332 331 41 | 30/30 | 5.83 | 1e-8 | |
3.75e-17 | 1.50e-19 | 3.92e-16 | 3.75e-17 | 30/30 | 78.6 | 1e-15 | |
0 | 0 | 0 | 0 | 30/30 | 5.1 | 1e-15 | |
1.11e-24 | 6.36e-26 | 5.26e-24 | 1.11e-24 | 30/30 | 9.7 | 1e-15 | |
1.26e-16 | 1.73e-21 | 1.67e-15 | 1.26e-16 | 30/30 | 156.6 | 1e-15 | |
-3.322 368 011 | -3.322 368 011 | -3.322 368 011 | -3.322 368 011 | 30/30 | 0.18 | 1e-9 | |
-186.730 908 8 | -186.730 908 8 | -186.730 908 8 | -186.730 908 8 | 30/30 | 0.98 | 1e-7 | |
-10.153 199 68 | -10.153 199 68 | -10.153 199 68 | -10.153 199 68 | 30/30 | 1.18 | 1e-8 | |
-10.402 940 57 | -10.402 940 57 | -10.402 940 57 | -10.402 940 57 | 30/30 | 11.58 | 1e-8 | |
-10.536 409 82 | -10.536 409 82 | -10.536 409 82 | -10.536 409 82 | 30/30 | 27.4 | 1e-9 | |
0 | 0 | 0 | 0 | 30/30 | 1 668 | 1e-15 | |
0.000 381 827 | 0.000 381 827 | 0.000 381 83 | 0.000 381 827 | 30/30 | 10.34 | 1e-8 |
Fig 12
Convergence progress of the proposed algorithm on the multimodal functions $ \mathit{\boldsymbol{F_4}} $, $ \mathit{\boldsymbol{F_5}} $ and $ \mathit{\boldsymbol{F_6}} $, where curves are obtained by subtracting -78.332 331 407 45 from the true value of $ \mathit{\boldsymbol{F_6}} $ for each iteration"
Fig 14
Convergence progress of the proposed algorithm on the multimodal functions $ \mathit{\boldsymbol{F_{10}}} $, $ \mathit{\boldsymbol{F_{11}}} $, where the iteration curve is obtained by subtracting -3.322 368 011 from the true value of $ \mathit{\boldsymbol{F_{11}}} $ for each iteration; and $ \mathit{\boldsymbol{F_{12}}} $, where the iteration curve is obtained by subtracting -186.730 908 831 from the true value of $ \mathit{\boldsymbol{F_{12}}} $ for each iteration"
Fig 15
Convergence progress of the proposed algorithm on the multimodal functions $ \mathit{\boldsymbol{F_{13}}} $, where the iteration curve is obtained by subtracting -10.153 199 679 from the true value of $ \mathit{\boldsymbol{F_{13}}} $ for each iteration; $ \mathit{\boldsymbol{F_{14}}} $, where the iteration curve is obtained by subtracting -10.402 940 566 from the true value of $ \mathit{\boldsymbol{F_{14}}} $ for each iteration; and $ \mathit{\boldsymbol{F_{15}}} $, where the iteration curve is obtained by subtracting -10.536 409 816 5 from the true value of $ \mathit{\boldsymbol{F_{15}}} $ for each iteration"
Fig 16
Convergence progress of the proposed algorithm on the multimodal functions $ \mathit{\boldsymbol{F_{16}}} $; $ \mathit{\boldsymbol{F_{17}}} $, where the curves are obtained by subtracting 0.000 381 827 from the true value of $ \mathit{\boldsymbol{F_{17}}} $ for each iteration; and $ \mathit{\boldsymbol{F_{18}}} $"
Table 4
Parameters of cylindrical spiral compression spring"
Spring diameter | |
Spring wire diameter | |
Spring total number of turns | |
Rotation ratio | |
Spring terminal type factor | |
Proportion of spring material/(N/mm | |
Shear modulus of the spring material/(N/mm | |
Shearing stress of the spring wire/(N/mm | |
Spring support laps | |
Working load/N |
Table 5
Comparisons of the results obtained from the proposed algorithm and algorithms in [20] and [21] for $\mathit{\boldsymbol{F_1}}$–$\mathit{\boldsymbol{F_3}}$, $\mathit{\boldsymbol{F_7}}$, $\mathit{\boldsymbol{F_8}}$ and $\mathit{\boldsymbol{F_{17}}}$"
Algorithm | FEP | OGA/Q | CMA-ES | JADE | OLPSO-L | GPSO | Fsolve* | LargeScale* | GradObj* | The proposed |
4.6e-2 | 0 | 1.76e+2 | 0 | 0 | 0 | 553 | 259 | 517 | 0 | |
Rank | 2 | 1 | 3 | 1 | 1 | 1 | 6 | 4 | 5 | 1 |
1.8e-2 | 4.4e-16 | 12.124 | 4.4e-15 | 4.14e-15 | 4.4e-015 | 212 | 86 | 19.5 | 0 | |
Rank | 6 | 2 | 7 | 4 | 3 | 5 | 10 | 9 | 8 | 1 |
1.6e-2 | 0 | 9.59e-16 | 2.e-4 | 0 | 0.003 7 | 0 | 4.87E-13 | 0 | 1.48e-17 | |
Rank | 6 | 1 | 3 | 5 | 1 | 5 | 1 | 4 | 1 | 2 |
5.06 | 0.75 | 2.33e-15 | 0.32 | 1.26 | 0.042 0 | 618 | 6.64E-01 | 0.53 | 3.75e-17 | |
Rank | 9 | 7 | 2 | 4 | 8 | 3 | 10 | 6 | 5 | 1 |
5.7e-4 | 0 | 4.56e-16 | 1.3e-54 | 1.1e-38 | 1.8326e-52 | 0 | 2.4E-35 | 1E-88 | 0 | |
Rank | 8 | 1 | 7 | 3 | 5 | 4 | 1 | 6 | 2 | 1 |
14.98 | 3.03e-2 | 3.15e+3 | 7.1 | 3.8e-4 | 3.9e-004 | 12 700 | 4.95E+03 | 5.15E+03 | 0.000 381 827 | |
Rank | 6 | 4 | 7 | 5 | 3 | 2 | 10 | 8 | 9 | 1 |
Average rank | 6.17 | 2.83 | 4.83 | 3.67 | 3.5 | 3.3 | 6.3 | 6.17 | 5 | 1.17 |
Final rank | 8 | 2 | 6 | 5 | 4 | 3 | 9 | 8 | 7 | 1 |
1 |
USTUNDAG B, EKSIN I, BIR A. A new approach to global optimization using a close loop control system with fuzzy logic controller. Advances in Engineering Software, 2002, 33 (6): 309- 318.
doi: 10.1016/S0965-9978(02)00036-4 |
2 |
LEE J, CHIANG H D. A dynamical trajectory-based methodology for systematically computing multiple optimal solutions of general nonlinear programming problems. IEEE Trans. on Automatic Control, 2004, 49 (6): 888- 899.
doi: 10.1109/TAC.2004.829603 |
3 |
MOTEE N, JADBABAIE A. Distributed multi-parametric quadratic programming. IEEE Trans. on Automatic Control, 2009, 54 (10): 2279- 2289.
doi: 10.1109/TAC.2009.2014916 |
4 |
LIU Q S, HUANG T W, WANG J. One-layer continuousand discrete-time projection neural networks for solving variational inequalities and related optimization problems. IEEE Trans. on Neural Network, 2014, 25 (7): 1308- 1318.
doi: 10.1109/TNNLS.2013.2292893 |
5 |
XIA Y S, FENG G, WANG J. A novel recurrent neural network for solving nonlinear optimization problems with inequality constraints. IEEE Trans. on Neural Network, 2008, 19 (8): 1340- 1353.
doi: 10.1109/TNN.2008.2000273 |
6 | HAYAKAWA Y, NAKAJIMA K. Design of the inverse function delayed neural network for solving combinatorial optimization problems. IEEE Trans. on Neural Network, 2010, 21 (2): 224- 237. |
7 |
LIU Q S, YANG S F, WANG J. A collective neurodynamic approach to distributed constrained optimization. IEEE Trans. on Neural Network, 2017, 28 (8): 1747- 1758.
doi: 10.1109/TNNLS.2016.2549566 |
8 |
QIN S T, LI X Y, WANG J. A neurodynamic optimization approach to bilevel quadratic programming. IEEE Trans. on Neural Network, 2017, 28 (11): 2580- 2591.
doi: 10.1109/TNNLS.2016.2595489 |
9 | QIN S T, FENG J Q, SONG J H, et al. A one-layer recurrent neural network for constrained complex-variable convex optimization. IEEE Trans. on Neural Network, 2018, 29 (3): 534- 543. |
10 | ZHANG Y N, GONG H H, YANG M, et al. Stepsize range and optimal value for Taylor-Zhang discretization formula applied to zeroing neurodynamics illustrated via future equalityconstrained quadratic programming. IEEE Trans. on Neural Network, 2019, 30 (3): 959- 966. |
11 | LI J, ZHANG Y N, MAO M Z. General square-pattern discretization formulas via second-order derivative elimination for zeroing neural network illustrated by future optimization. IEEE Trans. on Neural Network, 2019, 30 (3): 891- 901. |
12 |
LI C J, YU X H, HUANG T W, et al. Distributed optimal consensus over resource allocation network and its application to dynamical economic dispatch. IEEE Trans. on Neural Network, 2018, 29 (6): 2407- 2418.
doi: 10.1109/TNNLS.2017.2691760 |
13 |
MA S Z, YANGY J, LIU H Q. A parameter free filled function for unconstrained global optimization. Applied Mathematics Computation, 2010, 215 (10): 3610- 3619.
doi: 10.1016/j.amc.2009.10.057 |
14 |
LIU X. A class of continuously differentiable filled functions for global optimization. IEEE Trans. on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2008, 38 (1): 38- 44.
doi: 10.1109/TSMCA.2007.909554 |
15 | GAO C L, YANG Y J, HAN B S. A new class of filled functions with one parameter for global optimization. Computers&Mathematics with Applications, 2011, 62 (6): 2393- 2403. |
16 | WANG C J, YANG Y J, LI J. A new filled function method for unconstrained global optimization. Journal of Computational and Applied Mathematics, 2009, 225 (1): 68- 79. |
17 | LIANG Y M, ZHANG L S, LI M M, et al. A filled function method for global optimization. Journal of Computational and Applied Mathematics, 2007, 205 (1): 16- 31. |
18 | LIANG J J, QIN A K, BASKAR S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. on Evolutionary Computation, 2006, 10 (3): 281- 295. |
19 |
WANG Y P, DANG C Y. An evolutionary algorithm for global optimization based on level-set evolution and Latin squares. IEEE Trans. on Evolutionary Computation, 2007, 11 (5): 579- 595.
doi: 10.1109/TEVC.2006.886802 |
20 |
LU B Q, GAO G Q, LU Z Y. The block diagram method for designing the particle swarm optimization algorithm. Journal of Global Optimization, 2012, 52 (4): 689- 710.
doi: 10.1007/s10898-011-9699-9 |
21 |
ZHAN Z H, ZHANG J, LI Y, et al. Orthogonal learning particle swarm optimization. IEEE Trans. on Evolutionary Computation, 2011, 15 (6): 832- 847.
doi: 10.1109/TEVC.2010.2052054 |
22 | SUN C L, JIN Y C, CHENG R, et al. Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems. IEEE Trans. on Evolutionary Computation, 2017, 21 (4): 644- 659. |
23 | MERCORELLI P. Biorthogonal wavelet trees in the classification of embedded signal classes for intelligent sensors using machine learning applications. Journal of the Franklin Institute, 2007, 334 (6): 813- 829. |
24 |
YANG Q, CHEN W N, DENG J D, et al. A level-based learning swarm optimizer for large-scale optimization. IEEE Trans. on Evolutionary Computation, 2018, 22 (4): 578- 593.
doi: 10.1109/TEVC.2017.2743016 |
25 |
YANG M, OMIDVAR M N, LI C H, et al. Efficient resource allocation in cooperative co-evolution for large-scale global optimization. IEEE Trans. on Evolutionary Computation, 2017, 21 (4): 493- 503.
doi: 10.1109/TEVC.2016.2627581 |
26 |
LU X F, MENZEL S, TANG K, et al. Cooperative coevolution-based design optimization:a concurrent engineering perspective. IEEE Trans. on Evolutionary Computation, 2018, 22 (2): 173- 187.
doi: 10.1109/TEVC.2017.2713949 |
27 | BRANKE J, ASAFUDDOULA M, BHATTACHARJEE K S, et al. Efficient use of partially converged simulations in evolutionary optimization. IEEE Trans. on Evolutionary Computation, 2017, 21 (1): 52- 64. |
28 |
LI Z H, ZHANG Q F. A simple yet efficient evolution strategy for large-scale black-box optimization. IEEE Trans. on Evolutionary Computation, 2018, 22 (5): 637- 646.
doi: 10.1109/TEVC.2017.2765682 |
29 |
SUN Y, KIRLEY M, HALGAMUGE S K. A recursive decomposition method for large scale continuous optimization. IEEE Trans. on Evolutionary Computation, 2018, 22 (5): 647- 661.
doi: 10.1109/TEVC.2017.2778089 |
30 |
GU B, SHENG V S. A solution path algorithm for general parametric quadratic programming problem. IEEE Trans. on Neural Network, 2018, 29 (9): 4462- 4472.
doi: 10.1109/TNNLS.2017.2771456 |
31 |
CHATTERJEE O, CHAKRABARTTY S. Decentralized global optimization based on a growth transform dynamical system model. IEEE Trans. on Neural Network, 2018, 29 (12): 6052- 6061.
doi: 10.1109/TNNLS.2018.2817367 |
[1] | Guan WANG, Yufeng ZHAN, Yuanqing XIA, Liping YAN. Distributed point-to-point routing method for tasks in cloud control systems [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 792-804. |
[2] | Shuyan LI, Keke WAN, Bolin GAO, Rui LI, Yue WANG, Keqiang LI. Predictive cruise control for heavy trucks based on slope information under cloud control system [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 812-826. |
[3] | Jin WANG, Hongjiu YANG, Yuanqing XIA, Ce YAN. Stochastic stabilization of Markovian jump cloud control systems based on max-plus algebra [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 827-834. |
[4] | Ruifeng FAN, Xunhe YIN, Zhenfei LIU, Hak Keung LAM. Compensated methods for networked control system with packet drops based on compressed sensing [J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1539-1556. |
[5] | Chuan LIN, Qing CHANG, Xianxu LI. Uplink NOMA signal transmission with convolutional neural networks approach [J]. Journal of Systems Engineering and Electronics, 2020, 31(5): 890-898. |
[6] | Siyu HUA, Xugang WANG, Yin ZHU. Sliding-mode control for a rolling-missile with input constraints [J]. Journal of Systems Engineering and Electronics, 2020, 31(5): 1041-1050. |
[7] | Hongwei LI, Jianyong LIU, Liang CHEN, Jingbo BAI, Yangyang SUN, Kai LU. Chaos-enhanced moth-flame optimization algorithm for global optimization [J]. Journal of Systems Engineering and Electronics, 2019, 30(6): 1144-1159. |
[8] | Jiayi TIAN, Shifeng ZHANG. Active disturbance rejected predictive functional control for space vehicles with RCS [J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 1022-1035. |
[9] | Zhuoran ZHANG, Changqiang HUANG, Hanqiao HUANG, Shangqin TANG, Kangsheng DONG. An optimization method: hummingbirds optimization algorithm [J]. Journal of Systems Engineering and Electronics, 2018, 29(2): 386-404. |
[10] | Fengying Zheng, Ziyang Zhen, and Huajun Gong. Observer-based backstepping longitudinal control for carrier-based UAV with actuator faults [J]. Systems Engineering and Electronics, 2017, 28(2): 322-337. |
[11] | Hui Sun, Jianguo Yan, Yaohong Qu, and Jie Ren. Sensor fault-tolerant observer applied in UAV anti-skid braking control under control input constraint [J]. Systems Engineering and Electronics, 2017, 28(1): 126-. |
[12] | Xuejiao Sun, Rui Zhou, and Delong Hou. Output-feedback based partial integrated missile guidance and control law design [J]. Journal of Systems Engineering and Electronics, 2016, 27(6): 1238-1248. |
[13] | Wei Shang, Shengjing Tang, Jie Guo, Yueyue Ma, and Yuhang Yun. Robust sliding mode control with ESO for dual-control missile [J]. Journal of Systems Engineering and Electronics, 2016, 27(5): 1073-1082. |
[14] | Litong Ren, Shousheng Xie, Yu Zhang, Jingbo Peng, and Ledi Zhang. Chattering analysis for discrete sliding mode control of distributed control systems [J]. Journal of Systems Engineering and Electronics, 2016, 27(5): 1096-1107. |
[15] | Qiuxia Chen and Andong Liu. D-stability and disturbance attenuation properties for networked control systems: switched system approach [J]. Journal of Systems Engineering and Electronics, 2016, 27(5): 1108-1114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||