Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (5): 995-1006.doi: 10.21629/JSEE.2019.05.16
• Control Theory and Application • Previous Articles Next Articles
Vedadi Moghaddam TAHMINEH(), Yadavar Nikravesh SEYYED KAMALEDDIN(), Azam Khosravi MOHAMMAD*()
Received:
2018-07-18
Online:
2019-10-08
Published:
2019-10-09
Contact:
Azam Khosravi MOHAMMAD
E-mail:t_vedadi@aut.ac.ir;nikravsh@aut.ac.ir;m.a.khosravi@aut.ac.ir
About author:
TAHMINEH Vedadi Moghaddam was born in 1985. She received her B.S. degree in 2007 from Imam Khomeini International University, Qazvin, Iran. She received her M.S. degree in 2011, in the field fractional order controller, from Electrical Engineering Department of Imam Khomeini International University, Qazvin, Iran. Currently, she is working towards her Ph.D. degree at Amirkabir University of Technology, Tehran, Iran. Her current research interests include robust control, adaptive control and nonlinear fractional order systems. Email: Vedadi Moghaddam TAHMINEH, Yadavar Nikravesh SEYYED KAMALEDDIN, Azam Khosravi MOHAMMAD. Constrained sliding mode control of nonlinear fractional order input affine systems[J]. Journal of Systems Engineering and Electronics, 2019, 30(5): 995-1006.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | LI Y M, TONG S C, LI T S. Composite adaptive fuzzy output feedback control design for uncertain nonlinear strict-feedback systems with input saturation. IEEE Trans. on Cybernetics, 2014, 45 (10): 2299- 2308. |
2 |
YANG Y, YUE D, XUE Y S. Decentralized adaptive neural output feedback control of a class of large-scale time-delay systems with input saturation. Journal of the Franklin Institute, 2015, 352 (5): 2129- 2151.
doi: 10.1016/j.jfranklin.2015.02.009 |
3 |
GOUTA H, SAID S H, SAHLI F M. Model-based predictive and backstepping controllers for a state coupled four-tank system with bounded control inputs:a comparative study. Journal of the Franklin Institute, 2015, 352 (11): 4864- 4889.
doi: 10.1016/j.jfranklin.2015.08.004 |
4 | AZINHEIRA J R, MOUTINHO A. Hover control of an UAV with backstepping design including input saturations. IEEE Trans. on Control Systems Technology, 2008, 16 (3): 517- 526. |
5 | WANG H Q, CHEN B, LIU X P, et al. Adaptive neural tracking control for stochastic nonlinear strict-feedback systems with unknown input saturation. Information Sciences, 2014, 269 (10): 300- 315. |
6 | LI Y M, TONG S C, LI T S. Adaptive fuzzy output-feedback control for output constrained nonlinear systems in the presence of input saturation. Fuzzy Sets&Systems, 2014, 248, 138- 155. |
7 |
LI Y M, TONG S C, LI T S. Hybrid fuzzy adaptive output feedback control design for uncertain MIMO nonlinear systems with time-varying delays and input saturation. IEEE Trans. on Fuzzy Systems, 2016, 24 (4): 841- 853.
doi: 10.1109/TFUZZ.2015.2486811 |
8 |
LI Y M, TONG S C, LI T S. Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control direction and unknown dead-zones. IEEE Trans. on Fuzzy Systems, 2015, 23 (4): 1228- 1241.
doi: 10.1109/TFUZZ.2014.2348017 |
9 | TEEL A R, PRALY L. On assigning the derivative of a disturbance attenuation control lyapunov function. Mathematics of Control, Signals and Systems, 2000, 13 (2): 95- 124. |
10 |
LOGEMANN H, RYAN E. Time-varying and adaptive discrete-time low-gain control of infinite-dimensional linear systems with input nonlinearities. Mathematics of Control, Signals and Systems, 2000, 13 (4): 293- 317.
doi: 10.1007/PL00009871 |
11 | NOROOZI N, KHAYATIAN A, GEISELHART R. A characterization of integral input-to-state stability for hybrid systems. Mathematics of Control, Signals and Systems, 2017, 29 (3): 1- 32. |
12 |
LIM Y H, OH K K, AHN H S. Stability and stabilization of fractional-order linear systems subject to input saturation. IEEE Trans. on Automatic Control, 2013, 58 (4): 1062- 1067.
doi: 10.1109/TAC.2012.2218064 |
13 |
SHAHRI E S A, ALFI A, MACHADO J A T. An extension of estimation of domain of attraction for fractional order linear system subject to saturation control. Applied Mathematics Letters, 2015, 47, 26- 34.
doi: 10.1016/j.aml.2015.02.020 |
14 |
SHAHRI E S A, BALOCHIAN S. Analysis of fractionalorder linear systems with saturation using Lyapunov's second method and convex optimization. International Journal of Automation and Computing, 2015, 12 (4): 440- 447.
doi: 10.1007/s11633-014-0856-8 |
15 |
LUO J H. State-feedback control for fractional-order nonlinear systems subject to input saturation. Mathematical Problems in Engineering, 2014.
doi: 10.1155/2014/891639 |
16 | UTKIN V, GULDNER J, SHI J. Sliding mode control in electro-mechanical systems. Boca Raton: CRC Press, 2009. |
17 | EDWARDS C, SPURGEON S K. Sliding mode control:theory and applications. Boca Raton: CRC Press, 1998. |
18 | UTKIN V I. Sliding modes in control and optimization. Berlin Heidelberg: Springer-Verlag, 1992. |
19 | FRIDMAN L, LEVANT A. Sliding mode control enginerring. Boca Raton: CRC Press, 2002. |
20 |
SI-AMMOUR A, DJENNOUNE S, BETTAYEB M. A sliding mode control for linear fractional systems with input and state delays. Communications in Nonlinear Science and Numerical Simulation, 2009, 14 (5): 2310- 2318.
doi: 10.1016/j.cnsns.2008.05.011 |
21 |
DADRAS S, MOMENI H R. Fractional terminal sliding mode control design for a class of dynamical systems with uncertainty. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 367- 377.
doi: 10.1016/j.cnsns.2011.04.032 |
22 | MUJUMDAR A, KURODE S, TAMHANE B. Fractionalorder sliding mode control for single link flexible manipulator. Proc. of the IEEE International Conference on Control Applications, 2013: 288-293. |
23 | ZHANG D, CAO L, TANG S. Fractional-order sliding mode control for a class of uncertain nonlinear systems based on LQR. International Journal of Advanced Robotic Systems, 2017, 14 (2): 1- 15. |
24 | MÖ E F E. New trends in nanotechnology and fractional calculus applications. Dordrecht: Springer, 2010. |
25 | RAMÍREZ H S, BATTLE V F. Modern sliding mode control theory. Berlin: Springer, 2008. |
26 | PISANO A, RAPAI'C M, USAI E. Sliding modes after the first decade of the 21st century:state of the art. Berlin: Springer Science and Business Media, 2011. |
27 |
LI C P, ZHANG F R. A survey on the stability of fractional differential equations. European Physical Journal Special Topics, 2011, 193, 27- 47.
doi: 10.1140/epjst/e2011-01379-1 |
28 | WOODHOUSE N M J. Special relativity. London: SpringerVerlag, 2003. |
29 | ULRICH L, ROHDE G C J, PODDAR A K, et al. Introduction to differential calculus:systematic studies with engineering applications for beginners. New York: Wiley, 2012. |
30 | PODLUBNY I. Fractional differential equations:an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Salt Lake: Academic Press, 1998. |
31 |
LI Y, CHEN Y Q, PODLUBNY I. Stability of fractional-order nonlinear dynamic systems:Lyapunov direct method and generalized mittag-leffler stability. Computers and Mathematics with Applications, 2010, 59 (5): 1810- 1821.
doi: 10.1016/j.camwa.2009.08.019 |
32 | SASTRY S, BODSON M. Adapative control-stability convergence and robustness. New Jersey: Prentice Hall, 1989. |
33 |
ZHANG B T, PI Y G, LUO Y. Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor. ISA Transactions, 2012, 51 (5): 649- 656.
doi: 10.1016/j.isatra.2012.04.006 |
34 |
CHEN W C. Nonlinear dynamics and chaos in a fractionalorder financial system. Chaos, Solitons and Fractals, 2008, 36 (5): 1305- 1314.
doi: 10.1016/j.chaos.2006.07.051 |
35 |
ZHEN W, XIA H, GUODONG S. Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Computers and Mathematics with Applications, 2011, 62 (3): 1531- 1539.
doi: 10.1016/j.camwa.2011.04.057 |
36 |
JIANG Z P. A note on chaotic secure communication systems. IEEE Trans. on Circuits Systerm I-Fundamental Theory and Applications, 2002, 49 (1): 92- 96.
doi: 10.1109/81.974882 |
37 | JIA H Y, TAO Q, CHEN Z Q. Analysis and circuit design of a fractional-order Lorenz system with different fractional orders. Systems Science&Control Engineering, 2014, 2 (1): 745- 750. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||