Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (5): 946-958.doi: 10.21629/JSEE.2019.05.12
• Systems Engineering • Previous Articles Next Articles
Yu YANG(), Xiaoguang GAO*(), Zhigao GUO()
Received:
2018-11-06
Online:
2019-10-08
Published:
2019-10-09
Contact:
Xiaoguang GAO
E-mail:youngiv@126.com;cxg2012@nwpu.edu.cn;buckleyguo@mail.nwpu.edu.cn
About author:
YANG Yu was born in 1991. He received his B.S. degree from Northwestern Polytechnical University, Xi'an, China. He is now a Ph.D. candidate from the Department of System Engineering, Northwestern Polytechnical University. His areas of research include Bayesian networks, data mining, and image recognition. E-mail: Supported by:
Yu YANG, Xiaoguang GAO, Zhigao GUO. Finding optimal Bayesian networks by a layered learning method[J]. Journal of Systems Engineering and Electronics, 2019, 30(5): 946-958.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
BIC scores for learned BNs"
| Data | PC | TPDA | HC | MMHC | LOL | LOL+ |
1 000 | -1.216 6E4 | -1.203 1E4 | -1.176 2E4 | -1.206 9E4 | |||
25 | 2 000 | -2.402 3E4 | -2.383 8E4 | -2.339 6E4 | -2.361 8E4 | ||
5 000 | - | - | -5.849 9E4 | -5.885 1E4 | |||
1 000 | -1.471 0E4 | -1.458 2E4 | -1.417 9E4 | -1.460 7E4 | |||
30 | 2 000 | -2.903 8E4 | -2.861 5E4 | -2.813 9E4 | -2.862 0E4 | ||
5 000 | -7.189 7E4 | -7.007 6E4 | -7.004 9E4 | -7.038 4E4 | |||
1 000 | -1.727 1E4 | -1.712 5E4 | -1.671 5E4 | -1.714 4E4 | |||
35 | 2 000 | -3.406 4E4 | -3.368 1E4 | -3.311 7E4 | -3.360 8E4 | -3.303 5E4 | |
5 000 | -8.493 9E4 | - | -8.252 3E4 | -8.309 8E4 | |||
1 000 | -1.923 3E4 | -1.908 9E4 | -1.855 2E4 | -1.913 2E4 | -1.850 3E4 | ||
40 | 2 000 | -3.779 3E4 | - | -3.682 7E4 | -3.751 4E4 | -3.675 6E4 | |
5 000 | -9.427 7E4 | - | -9.173 4E4 | -9.239 8E4 | |||
1 000 | -2.161 6E4 | -2.155 5E4 | -2.092 0E4 | -2.155 4E4 | -2.086 0E4 | ||
45 | 2 000 | -4.282 0E4 | - | -4.152 2E4 | -4.227 9E4 | -4.143 8E4 | |
5 000 | -1.060 8E5 | - | -1.036 1E5 | -1.048 3E5 | |||
1 000 | -2.458 2E4 | -2.454 3E4 | -2.386 1E4 | -2.447 8E4 | -2.378 0E4 | ||
50 | 2 000 | -4.864 9E4 | - | -4.735 9E4 | -4.830 1E4 | -4.729 2E4 | |
5 000 | -1.209 3E5 | - | -1.181 7E5 | -1.187 9E5 | -1.181 1E5 |
Table 2
Running time s"
| Data | PC | TPDA | HC | MMHC | LOL | LOL+ |
1 000 | 7.99 | 7.22 | 0.79 | 14.16 | 14.39 | ||
25 | 2 000 | 17.33 | 8.84 | 1.05 | 21.57 | 21.82 | |
5 000 | - | - | 11.05 | 42.51 | 42.81 | ||
1 000 | 10.38 | 15.29 | 1.22 | 48.97 | 49.33 | ||
30 | 2 000 | 26.80 | 14.42 | 1.61 | 72.52 | 72.15 | |
5 000 | 102.88 | 18.98 | 2.45 | 132.50 | 132.95 | ||
1 000 | 16.41 | 24.69 | 1.61 | 85.14 | 86.15 | ||
35 | 2 000 | 43.32 | 25.58 | 2.26 | 108.85 | 111.08 | |
5 000 | - | 34.11 | 3.54 | 247.61 | 248.08 | ||
1 000 | 19.16 | 38.45 | 2.20 | 128.66 | 124.25 | ||
40 | 2 000 | - | 41.82 | 2.95 | 207.80 | 211.71 | |
5 000 | - | 51.02 | 4.79 | 431.75 | 432.67 | ||
1 000 | 27.17 | 66.14 | 3.20 | 254.66 | 261.20 | ||
45 | 2 000 | 97.74 | 67.48 | 4.41 | 851.54 | 857.26 | |
5 000 | - | 51.02 | 6.60 | 1 352.62 | 1 355.26 | ||
1 000 | 38.00 | 115.81 | 4.32 | 492.13 | 501.44 | ||
50 | 2 000 | - | 113.95 | 5.23 | 845.47 | 859.79 | |
5 000 | - | 142.07 | 9.34 | 1 364.17 | 1 369.71 |
Table 3
Layers of nodes obtained by the LOL algorithm"
| Data | Layers |
1 000 | (1-11, 18-21); (12-17, 22-25) | |
25 | 2 000 | (1-11, 18-21); (12-17, 22-25) |
5 000 | (1-11, 18-21); (12-17, 22-25) | |
1 000 | (1-11, 18-21); (12-17, 22-30) | |
30 | 2 000 | (1-11, 18-21); (12-17, 22-30) |
5 000 | (1-11, 18-21); (12-17, 22-30) | |
1 000 | (1-11, 18-21); (14-16); (22); (12); (13, 17, 23-35) | |
35 | 2 000 | (1-11, 18-21); (12, 13, 17); (25, 29, 30, 33); (14-16, 22-24, 26-28, 31, 32, 34, 35) |
5 000 | (1-11, 18-21); (12); (14-16); (22); (13, 17, 23-35) | |
1 000 | (1-11, 18-21); (14-16); (22); (12); (25, 29, 31-34, 38); (13, 17, 23, 24, 26-28, 30, 35-37, 39, 40) | |
40 | 2 000 | (1-11, 18-21); (12, 13, 17, 24, 25, 30, 31, 33); (26); (29, 32); (14-16, 22, 23, 27, 28, 34-40) |
5 000 | (1-11, 18-21); (12); (14-16); (22); (13, 17); (24, 25); (23); (26-40) | |
1 000 | (1-11, 18-21); (14-16); (22); (12); (25, 29, 31-34, 38, 39, 42); (13, 17, 23, 24, 26-28, 30, 35-37, 40, 41, 43-45) | |
45 | 2 000 | (1-11, 18-21); (12, 13, 17); (24, 25, 29-31, 33); (26); (14-16, 22, 23, 27, 28, 32, 34-45) |
5 000 | (1-11, 18-21); (12); (13-16); (17); (22); (24, 25); (26); (23, 27-45) | |
1 000 | (1-11, 18-21); (14-16); (22); (12); (25, 29, 31-34, 38, 39, 42); (30, 40, 41); (13, 17, 23, 24, 26-28, 35-37, 43-50) | |
50 | 2 000 | (1-11, 18-21); (12, 13, 17); (24, 25, 29-31, 33); (26); (32); (14); (15, 16, 22, 23); (27, 28, 34-50) |
5 000 | (1-11, 18-21); (12); (13-16); (17); (22); (23); (32-38, 40, 44, 46); (24-31, 39, 41-43, 45, 47-50) |
1 | PEARL J. Probabilistic reasoning in intelligent systems: networks of plausible inference. San Mateo: Morgan Kaufmann, 1988. |
2 | ZHANG N, DING S F, ZHANG J, et al. An overview on restricted Boltzmann machine. Neurocomputing, 2017, 275 (1): 1186- 1199. |
3 |
ZHANG J, DING S F, ZHANG N. An overview on probability undirected graphs and their applications in image processing. Neurocomputing, 2018, 321, 156- 168.
doi: 10.1016/j.neucom.2018.07.078 |
4 | DE CAMPOS L M. A scoring function for learning Bayesian networks based on mutual information and conditional independence tests. Journal of Machine Learning Research, 2006, 7 (10): 2149- 2187. |
5 | PERRIER E, IMOTO S, MIYANO S. Finding optimal Bayesian network given a super-structure. Journal of Machine Learning Research, 2008, 9 (10): 2251- 2286. |
6 | YEHEZKEL R, LERNER B. Bayesian network structure learning by recursive autonomy identification. Journal of Machine Learning Research, 2009, 10 (7): 1527- 1570. |
7 | HECKENMAN D, GEIGER D, CHICKERRING D M. Learning Bayesian networks:the combination of knowledge and statistical data. Machine Learning, 1995, 20 (3): 1997- 243. |
8 | STECK H. Learning the Bayesian network structure: Dirichlet prior versus data. Proc. of the 24th Conference on Uncertainty in Artificial Intelligence, 2008: 511-518. |
9 | SCHWARZ G. Estimating the dimension of a model. The Annals of Statistics, 1978, 6 (2): 461- 464. |
10 |
SILANDER T, ROOS T, MYLLYMAKI P. Learning locally minimal optimal Bayesian networks. International Journal of Approximate Reasoning, 2010, 51 (5): 544- 557.
doi: 10.1016/j.ijar.2010.01.012 |
11 | CARVALHO A M, ROOS T, OLIVEIRA A L, et al. Discriminative learning of Bayesian networks via factorized conditional log-likelihood. Journal of Machine Learning Research, 2011, 12, 2181- 2210. |
12 | OTT S, IMOTO S, MIYANO S. Finding optimal models for small gene networks. Proc. of the Pacific Symposium on Biocomputing, 2004, 9, 557- 567. |
13 | OTT S, MIYANO S. Finding optimal gene networks using biological constraints. Genome Informatics, 2003, 14, 124- 133. |
14 | KOIVISTO M, SOOD K. Exact Bayesian structure discovery in Bayesian networks. Journal of Machine Learning Research, 2004, 5, 549- 573. |
15 | SINGH A P, MOORE A W. Finding optimal Bayesian networks by dynamic programming, CMUCALD-05-106. Pittsburgh, USA: Carnegie Mellon University, 2005. |
16 | EATON D, MURPHY K. Bayesian structure learning using dynamic programming and MCMC. Proc. of the 23rd Conference on Uncertainty in Artificial Intelligence, 2007: 101-108. |
17 | MALONE B, YUAN C H, HANSEN E A. Memory-efficient dynamic programming for learning optimal Bayesian networks. Proc. of the 25th Conference on Artificial Intelligence, 2011, 1057- 1062. |
18 | COOPER G F, HERSKOVITS E. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 1992, 9 (4): 309- 347. |
19 | GAMEZ J A, MATEO J L, PUERTA J M. Learning Bayesian networks by hill climbing:efficient methods based on progressive restriction of the neighborhood. Data Mining and Knowledge Discovery, 2011, 22 (1/2): 106- 148. |
20 |
LARRANAGA P, KARSHENAS H, BIELZA C, et al. A review on evolutionary algorithms in Bayesian network learning and inference tasks. Information Sciences, 2013, 233, 109- 125.
doi: 10.1016/j.ins.2012.12.051 |
21 |
WANG M L, GUO Y Y. Learning Bayesian networks from incomplete database using a novel evolutionary algorithm. Decision Support System, 2008, 45 (2): 368- 383.
doi: 10.1016/j.dss.2008.01.002 |
22 | WANG M L, LEUNG K S. An efficient data mining method for learning Bayesian networks using an evolutionary algorithm-based hybrid approach. IEEE Trans. on Evolutionary Computation, 2004, 8 (4): 378- 404. |
23 | DE CAMPOS L M, HUETE J F. Approximating causal orderings for Bayesian networks using genetic algorithms and simulated annealing. Proc. of the 8th Conference on Information Processing and Management of Uncertainty in KnowledgeBased Systems, 2000. |
24 | HENG X C, QIN Z, TIAN L, et al. Learning Bayesian network structures with discrete particle swarm optimization algorithm. Proc. of the IEEE Symposium on Foundations of Computational Intelligence, 2007: 47-52. |
25 | LI X L, WANG S C, HE X D. Learning Bayesian networks structures based on memory binary particle swarm optimization. Proc. of the 6th International Conference on Simulated Evolution and Learning, 2006: 568-574. |
26 | SAHIN F, DEVASIA A. Distributed particle swarm optimization for structural Bayesian network learning. Swarm Intelligence:Focus on Ant and Particle Swarm Optimization, 2007, 27, 505- 532. |
27 |
DE CAMPOS L M, FERNANDEZ-LUNA J M, GAMEZ J A, et al. Ant colony optimization for learning Bayesian net-works. International Journal of Approximate Reasoning, 2002, 31 (3): 291- 311.
doi: 10.1016/S0888-613X(02)00091-9 |
28 | DALY R, SHEN Q. Learning Bayesian network equivalence classes with ant colony optimization. Journal of Artificial Intelligence Research, 2009, 13 (4): 767- 779. |
29 | JI J Z, WEI H K, LIU C N. An artificial bee colony algorithm for learning Bayesian network. Soft Computing, 2013, 17 (6): 983- 994. |
30 | PEARL J. Causality:models, reasoning, and inference. Cambridge: Cambridge University Press, 2000. |
31 | SPIRTES P, GLYMOUR C, SCHEINES R. Causation, prediction and search. Massachusetts: MIT Press, 2000. |
32 | CHENG J, GREINER R, KELLY J, et al. Learning Bayesian networks form data:an information-theory based approach. Artificial Intelligence, 2002, 137 (1/2): 43- 90. |
33 | DE COMPOS L M, FERNANDEZ-LUNA, PUERTA J M. An iterated local search algorithm for learning Bayesian networks with restarts based on conditional independence tests. International Journal of Intelligent Systems, 2003, 18 (2): 221- 235. |
34 | FRIEDMAN N, NACHMAN I, PEER D. Learning Bayesian network structure from massive datasets: the"sparse candidate"algorithm. Proc. of the 15th Conference on Uncertainty in Artificial Intelligence, 1999: 206-215. |
35 | TSAMARDINOS I, BROWN L E, ALIFERIS C F. The maximin hill-climbing Bayesian network structure learning algorithm. Machine Learning, 2006, 65 (1): 31- 78. |
36 | KOJIMA K, PERRIER E, IMOTO S, et al. Optimal search on clustered structural constraint for learning Bayesian network structure. Journal of Machine Learning Research, 2010, 11, 663- 689. |
37 | KOLLER D, FRIEDMAN N. Probabilistic graphical models:principles and techniques. London: MIT Press, 2009. |
38 |
LIU H, ZHOU S G, LAM W, et al. A new hybrid method for learning Bayesian networks:separation and reunion. Knowledge-Based Systems, 2017, 121, 185- 197.
doi: 10.1016/j.knosys.2017.01.029 |
39 | XIE X C, GENG Z. A recursive method for structural learning of directed acyclic graphs. Journal of Machine Learning Research, 2008, 9, 459- 483. |
40 | MURPHY K P. The Bayes net toolbox for matlab. Operations Research, 2001. |
41 | FRANCOIS O. Structure learning package for bayes net toolbox. https://www.mathworks.cn/matlabcentral/fileexchange/13562-structure-learning-package-for-bayes-net-toolbox. |
42 |
HE C C, GAO X G, GUO Z G. Structure learning on Bayesian networks by finding the optimal ordering with and without priors. Journal of Systems Engineering and Electronics, 2018, 29 (6): 1209- 1227.
doi: 10.21629/JSEE.2018.06.09 |
[1] | Xiangyuan TAN, Xiaoguang GAO, Chuchao HE, Zidong WANG. Causal constraint pruning for exact learning of Bayesian network structure [J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 854-872. |
[2] | Chuchao HE, Xiaoguang GAO, Zhigao GUO. Structure learning on Bayesian networks by finding the optimal ordering with and without priors [J]. Journal of Systems Engineering and Electronics, 2018, 29(6): 1209-1227. |
[3] | Zhiqiang Cai, Shubin Si, Shudong Sun, and Hongyan Dui. Learning Bayesian network structure with immune algorithm [J]. Journal of Systems Engineering and Electronics, 2015, 26(2): 282-291. |
[4] | Chunfeng Wang, Sanyang Liu, and Mingmin Zhu. Bayesian network learning algorithm based on unconstrained optimization and ant colony optimization [J]. Journal of Systems Engineering and Electronics, 2012, 23(5): 784-790. |
[5] | Mingmin Zhu, Sanyang Liu, Youlong Yang, and Kui Liu. Using junction trees for structural learning of Bayesian networks [J]. Journal of Systems Engineering and Electronics, 2012, 23(2): 286-292. |
[6] | Chen Fei, Wang Xiufeng & Rao Yimei. Learning Bayesian networks using genetic algorithm [J]. Journal of Systems Engineering and Electronics, 2007, 18(1): 142-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||