Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (5): 931-945.doi: 10.21629/JSEE.2019.05.11
• Systems Engineering • Previous Articles Next Articles
Haiquan SUN1,2(), Wei XIA1,2,*(
), Xiaoxuan HU1,2(
), Chongyan XU3(
)
Received:
2019-03-15
Online:
2019-10-08
Published:
2019-10-09
Contact:
Wei XIA
E-mail:sunhaiquan2015@163.com;xiawei@hfut.edu.cn;xiaoxuanhu@hfut.edu.cn;xuchongy1970@sina.com
About author:
SUN Haiquan was born in 1993. He received his B.S. degree from Hefei University of Technology in 2016. He is currently working for his M.S. degree in management science and engineering at Hefei University of Technology. His research interest is satellite intelligent scheduling. E-mail: Supported by:
Haiquan SUN, Wei XIA, Xiaoxuan HU, Chongyan XU. Earth observation satellite scheduling for emergency tasks[J]. Journal of Systems Engineering and Electronics, 2019, 30(5): 931-945.
Table 1
Simulated satellites"
Sat_id | Sat_name | Sat_sensor_name | Sensor_msg/(°) | Apogee/km | Perigee/km |
0 | FENGYUN_1D_27431 | FY1D_Sensor1 | 35 | 872 | 851 |
1 | FENGYUN_3A_32958 | FY3A_Sensor1 | 25 | 827 | 826 |
2 | GAOFEN_1_39150 | GF1_Sensor1 | 25 | 652 | 628 |
3 | GAOFEN_2_40118 | GF2_Sensor1 | 35 | 633 | 621 |
4 | YAOGAN_12_37875 | YG12_Sensor1 | 30 | 491 | 488 |
5 | YAOGAN_13_37941 | YG13_Sensor1 | 25 | 514 | 511 |
6 | YAOGAN_14_38257 | YG14_Sensor1 | 25 | 479 | 471 |
7 | YAOGAN_15_38354 | YG15_Sensor1 | 25 | 1 206 | 1 196 |
8 | YAOGAN_16A_39011 | YG16A_Sensor1 | 25 | 1 162 | 1 018 |
9 | YAOGAN_17A_39239 | YG17A_Sensor1 | 35 | 1 184 | 997 |
10 | YAOGAN_18_39363 | YG18_Sensor1 | 25 | 514 | 510 |
11 | YAOGAN_19_39410 | YG19_Sensor1 | 30 | 1 207 | 1 201 |
12 | YAOGAN_20A_40109 | YG20A_Sensor1 | 25 | 1 122 | 1 059 |
13 | YAOGAN_21_40143 | YG21_Sensor1 | 25 | 498 | 482 |
14 | YAOGAN_22_40275 | YG22_Sensor1 | 25 | 1 207 | 1 198 |
15 | YAOGAN_23_40305 | YG23_Sensor1 | 30 | 513 | 511 |
16 | YAOGAN_24_40310 | YG24_Sensor1 | 25 | 651 | 628 |
17 | YAOGAN_25A_40338 | YG25A_Sensor1 | 30 | 1 105 | 1 076 |
18 | YAOGAN_26_40362 | YG26_Sensor1 | 30 | 491 | 484 |
19 | YAOGAN_27_40878 | YG27_Sensor1 | 25 | 1 207 | 1 193 |
Table 5
Algorithm running value statistics"
Scale | Total scheduled task value | Total scheduled task number | Total scheduled emergency task value | Total scheduled emergency task number | Total scheduled emergency task early completion time/ms} | |||||||||
ISBDR | ISDR | ISBDR | ISDR | ISBDR | ISDR | ISBDR | ISDR | ISBDR | ISDR | |||||
20-400 | 155.694 767 9 | 155.306 391 7 | 411 | 410 | 33.519 924 77 | 33.519 924 77 | 20 | 20 | 963 500 | 913 837 | ||||
40-400 | 187.355 917 2 | 186.910 33 | 429 | 427 | 65.482 530 32 | 65.482 530 32 | 39 | 39 | 1 988 093 | 1 870 252 | ||||
60-400 | 216.244 272 | 215.806 892 7 | 445 | 443 | 95.050 628 22 | 95.050 628 22 | 57 | 57 | 2 769 542 | 2 694 203 | ||||
80-400 | 246.844 995 1 | 246.177 952 2 | 462 | 460 | 125.708 562 4 | 125.708 562 4 | 75 | 75 | 3 836 727 | 3 606 310 | ||||
20-600 | 214.249 678 1 | 214.242 656 4 | 593 | 592 | 33.519 924 77 | 33.519 924 77 | 20 | 20 | 927 043 | 852 168 | ||||
40-600 | 245.635 376 1 | 245.614 460 6 | 610 | 608 | 65.482 530 32 | 65.482 530 32 | 39 | 39 | 1 963 499 | 1 674 982 | ||||
60-600 | 274.048 733 4 | 273.996 054 6 | 624 | 622 | 95.050 628 22 | 95.050 628 22 | 57 | 57 | 2 813 932 | 2 354 263 | ||||
80-600 | 303.039 729 7 | 302.876 002 | 641 | 637 | 124.041 624 6 | 124.041 624 6 | 74 | 74 | 3 763 401 | 3 368 258 | ||||
20-800 | 269.702 707 5 | 269.275 882 1 | 766 | 765 | 33.519 924 77 | 33.519 924 77 | 20 | 20 | 960 357 | 835 465 | ||||
40-800 | 300.988 291 | 300.222 456 4 | 781 | 780 | 65.482 530 32 | 65.482 530 32 | 39 | 39 | 1 925 611 | 1 800 719 | ||||
60-800 | 329.113 319 4 | 328.448 993 6 | 796 | 792 | 95.050 628 22 | 95.050 628 22 | 57 | 57 | 2 698 694 | 2 475 511 | ||||
80-800 | 359.537 311 6 | 358.851 915 4 | 812 | 808 | 125.708 562 4 | 125.708 562 4 | 75 | 75 | 3 698 408 | 3 301 407 | ||||
20-1 000 | 323.420 770 7 | 321.856 189 6 | 935 | 926 | 33.519 924 77 | 33.519 924 77 | 20 | 20 | 945 258 | 887 000 | ||||
40-1 000 | 354.063 524 6 | 352.471 790 3 | 950 | 942 | 65.482 530 32 | 65.482 530 32 | 39 | 39 | 1 897 306 | 1 672 188 | ||||
60-1 000 | 382.226 183 8 | 380.508 810 4 | 965 | 955 | 95.050 628 22 | 95.050 628 22 | 57 | 57 | 2 566 006 | 2 314 756 | ||||
80-1 000 | 412.148 476 1 | 410.565 007 6 | 980 | 971 | 125.708 562 4 | 125.708 562 4 | 75 | 75 | 3 619 846 | 3 252 925 |
1 | WU G H, WANG H L, PEDRYCZ W, et al. Satellite observation scheduling with a novel adaptive simulated annealing algorithm and a dynamic task clustering strategy. Computers&Industrial Engineering, 2017, 113, 576- 588. |
2 | NIU X, TANG H, WU L, et al. Imaging-duration embedded dynamic scheduling of earth observation satellites for emergent events. Mathematical Problems in Engineering, 2015, 2015 (4): 731734. |
3 |
NIU X, TANG H, WU L, et al. Satellite scheduling of large areal tasks for rapid response to natural disaster using a multiobjective genetic algorithm. International Journal of Disaster Risk Reduction, 2018, 28, 813- 825.
doi: 10.1016/j.ijdrr.2018.02.013 |
4 | GUO C, XIONG W, LIU C. Research on emergency mission planning of earth observation satellites. Proc. of the IEEE International Conference on Computer Communication and Internet, 2016, 191- 195. |
5 | WANG M, DAI G, VASILE M. Heuristic scheduling algorithm oriented dynamic tasks for imaging satellites. Mathematical Problems in Engineering, 2014, 2014 (5): 234928. |
6 | BERTSIMAS D, GRIFFITH J D, GUPTA V, et al. A comparison of Monte Carlo tree search and rolling horizon optimization for large-scale dynamic resource allocation problems. European Journal of Operational Research, 2014, 263 (2): 664- 678. |
7 |
LV Y L, ZHANG J, QIN W. A genetic regulatory networkbased method for dynamic hybrid flow shop scheduling with uncertain processing times. Applied Sciences, 2017, 7 (1)
doi: 10.3390/app7010023 |
8 |
CHANG D, FANG T, FAN Y. Dynamic rolling strategy for multi-vessel quay crane scheduling. Advanced Engineering Informatics, 2017, 34, 60- 69.
doi: 10.1016/j.aei.2017.09.001 |
9 | ZHU X, CHEN H, YANG L T, et al. Energy-aware rollinghorizon scheduling for real-time tasks in virtualized cloud data centers. Proc. of the IEEE International Conference on High Performance Computing and Communications&IEEE International Conference on Embedded and Ubiquitous Computing, 2013: 1119-1126. |
10 | STOLLETZ R, ZAMORANO E. A rolling planning horizon heuristic for scheduling agents with different qualifications. Transportation Research Part E:Logistics&Transportation Review, 2014, 68, 39- 52. |
11 |
CORDEAU J F, DELL'AMICO M, FALAVIGNA S, et al. A rolling horizon algorithm for auto-carrier transportation. Transportation Research Part B, 2015, 76, 68- 80.
doi: 10.1016/j.trb.2015.02.009 |
12 | LUO L, LUO Y, YOU Y, et al. A MIP model for rolling horizon surgery scheduling. Journal of Medical Systems, 2016, 40 (5): 1- 7. |
13 | HALL N G, MAGAZINE M J. Maximizing the value of a space mission. European Journal of Operational Research, 2007, 78 (2): 224- 241. |
14 | PEMBERTON A J C, GREENWALD B L G. On the need for dynamic scheduling of imaging satellites. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 2002, 34 (1): 165- 171. |
15 | HE C, ZHU X, GUO H, et al. Rolling-horizon scheduling for energy constrained distributed real-time embedded systems. Journal of Systems&Software, 2012, 85 (4): 780- 794. |
16 |
QIU D, HE C, LIU J, et al. A dynamic scheduling method of earth-observing satellites by employing rolling horizon strategy. The Scientific World Journal, 2013.
doi: 10.1155/2013/304047 |
17 | WANG J, YANG L T, ZHU X, et al. Dynamic scheduling for emergency tasks on distributed imaging satellites with task merging. IEEE Trans. on Parallel&Distributed Systems, 2014, 25 (9): 2275- 2285. |
18 |
ZHAI X, NIU X, TANG H, et al. Robust satellite scheduling approach for dynamic emergency tasks. Mathematical Problems in Engineering, 2015.
doi: 10.1155/2015/482923 |
19 | WANG J, ZHU X, YANG L T, et al. Towards dynamic realtime scheduling for multiple earth observation satellites. Journal of Computer&System Sciences, 2015, 81 (1): 110- 124. |
20 |
WU G H, MA M H, ZHU J H, et al. Multi-satellite observation integrated scheduling method oriented to emergency tasks and common tasks. Journal of Systems Engineering and Electronics, 2012, 23 (5): 723- 733.
doi: 10.1109/JSEE.2012.00089 |
21 | WANG J M, LI J F, TAN Y J. Study on heuristic algorithm for dynamic scheduling problem of earth observing satellites. Proc. of the IEEE 8th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2007: 9-14. |
22 | BIANCHESSI N, CORDEAU J F, DESROSIERS J, et al. A heuristic for the multi-satellite, multi-orbit and multi-user management of Earth observation satellites. European Journal of Operational Research, 2007, 177 (2): 750- 762. |
23 | TANGPATTANAKUL P, JOZEFOWIEZ N, LOPEZ P, et al. A multi-objective local search heuristic for scheduling Earth observations taken by an agile satellite. European Journal of Operational Research, 2015, 245 (2): 542- 554. |
24 |
HAO H, JIANG W, LI Y. Improved algorithms to plan missions for agile earth observation satellites. Journal of Systems Engineering and Electronics, 2014, 25 (5): 811- 821.
doi: 10.1109/JSEE.2014.00094 |
25 | LIU X, LAPORTE G, CHEN Y, et al. An adaptive large neighborhood search metaheuristic for agile satellite scheduling with time-dependent transition time. Computers&Operations Research, 2017, 86, 41- 53. |
26 | ROYCHOWDHURY S, ALLEN T T, ALLEN N B, et al. A genetic algorithm with an earliest due date encoding for scheduling automotive stamping operations. Computers&Industrial Engineering, 2017, 105, 201- 209. |
27 |
CHEN H, LI L M, ZHONG Z N, et al. Approach for earth observation satellite real-time and playback data transmission scheduling. Journal of Systems Engineering and Electronics, 2015, 26 (5): 982- 992.
doi: 10.1109/JSEE.2015.00107 |
28 |
CHEN H, WU J, SHI W, et al. Coordinate scheduling approach for EDS observation tasks and data transmission jobs. Journal of Systems Engineering and Electronics, 2016, 27 (4): 822- 835.
doi: 10.21629/JSEE.2016.04.11 |
29 | SONG B, YAO F, CHEN Y, et al. A hybrid genetic algorithm for satellite image downlink scheduling problem. Discrete Dynamics in Nature&Society, 2018, 2018, 1531452. |
30 |
CHEN H, LI J, PENG S, et al. Approximate path searching method for single-satellite observation and transmission task planning problem. Mathematical Problems in Engineering, 2017.
doi: 10.1155/2017/7304506 |
[1] | Guohua Wu, Manhao Ma, Jianghan Zhu, and Dishan Qiu. Multi-satellite observation integrated scheduling method oriented to emergency tasks and common tasks [J]. Journal of Systems Engineering and Electronics, 2012, 23(5): 723-740. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||