1 |
MCINTYRE G A, HINTZ K J. Comparison of several maneuver tracking models. Proc. of the SPIE Conference Signal Processing, Sensory Fusion and Target Recognition VⅡ, 1998: 48-63.
|
2 |
KHALOOZADEH H, KARSAZ A. Modified input estimation technique for tracking manoeuvring targets. IET Radar, Sonar&Navigation, 2008, 3 (1): 30- 41.
|
3 |
CHAN Y T, HU A G C, PLANT J B. A Kalman filter based tracking scheme with input estimation. IEEE Trans. on Aerospace and Electronic Systems, 2007, 15 (2): 237- 244.
|
4 |
BOGLER P L. Tracking a maneuvering target using input estimation. IEEE Trans. on Aerospace&Electronic Systems, 1987, 23 (3): 298- 310.
|
5 |
WHANG I H, LEE J G, SUNG T K. Modified input estimation technique using pseudoresiduals. IEEE Trans. on Aerospace and Electronic Systems, 2002, 30 (1): 220- 228.
|
6 |
LEE H, TAHK M J. Generalized input-estimation technique for tracking maneuvering targets. IEEE Trans. on Aerospace and Electronic Systems, 1999, 35 (4): 1388- 1402.
doi: 10.1109/7.805455
|
7 |
OH S, RUSSELL S, SASTRY S. Markov chain Monte Carlo data association for multi-target tracking. IEEE Trans. on Automatic Control, 2009, 54 (3): 481- 497.
doi: 10.1109/TAC.2009.2012975
|
8 |
REID D. An algorithm for tracking multiple targets. IEEE Trans. on Automatic Control,, 1979, 24 (6): 843- 854.
doi: 10.1109/TAC.1979.1102177
|
9 |
BAR-SHALOM Y, FORTMANN T. Tracking and data association. San Diego, CA: Academic Press, 1988.
|
10 |
PASULA H, RUSSELL S J, OSTLAND M, et al. Tracking many objects with many sensors. Proc. of the 16th International Joint Conference on Artificial Intelligence, 1999, 1160- 1171.
|
11 |
PASULA H. Identity uncertainty. Berkeley CA: University of California, 2003.
|
12 |
CONG S, HONG L, WICKER D. Markov-chain MonteCarlo approach for association probability evaluation. IEE Proceedings-Control Theory and Applications, 2004, 151 (2): 185- 193.
doi: 10.1049/ip-cta:20040037
|
13 |
DELLAERT F, SEITZ S M, THORPE C E, et al. EM, MCMC, and chain flipping for structure from motion with unknown correspondence. Machine Learning, 2003, 50 (1-2): 45- 71.
|
14 |
BERGMAN N, DOUCET A. Markov chain Monte Carlo data association for target tracking. Proc. of the IEEE International Conference on Acoustics Speech, Signal Processing, 2000, 11705- 11708.
|
15 |
BAR-SHALOM Y. Multi-target multi-sensor tracking: advanced applications. Norwood, Mass: Artech House, 1990.
|
16 |
HASTINGS W. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 1970, 57 (1): 97- 109.
|
17 |
OH S. A scalable multi-target tracking algorithm for wireless sensor networks. International Journal of Distributed Sensor Networks, 2012, DOI: 10.1155/2012/938521.
|
18 |
GILKS W, RICHARDSON S, SPIEGELHALTER D. Interdisciplinary statistics. New York: Chapman and Hall, 1996.
|
19 |
KHALOOZADEH H, KARSAZ A. A new state augmentation for maneuvering targets detection. Proc. of the Signal Processing and Communications, 2004: 65-69.
|
20 |
KARSAZ A, KHALOOZADEH H. A new algorithm based on generalized target maneuver detection. Proc. of the 6th International Conference on Control and Automation, 2007, DOI: 10.1109/ICCA.2007.4376918.
|
21 |
COX I. Multiple hypothesis tracking code. http://www.ee.ucl.ac.uk/~icox/.
|
22 |
DOUCET A, DE FREITAS J, GORDON N. Sequential Monte Carlo methods in practice. New York: Springer, 2001.
|