Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (4): 770-782.doi: 10.21629/JSEE.2019.04.14
• Control Theory and Application • Previous Articles Next Articles
Xiaolin NING(), Weiping YUAN(), Yanhong LIU*()
Received:
2018-08-13
Online:
2019-08-01
Published:
2019-09-01
Contact:
Yanhong LIU
E-mail:ningxiaolin@buaa.edu.cn;yuan_1166@sina.com;liu1253891321@163.com
About author:
NING Xiaolin was born in 1979. She received her B.E. degree in computer science from Shandong Normal University, Shandong, China, in 2001, and Ph.D. degree in mechanical engineering from Beihang University, Beijing, China, in 2008. She has been a professor with the School of Instrument and Optoelectronic Engineering, Beihang University since 2011. From March 2014 to March 2015, she was a visiting scholar at the National University of Singapore. Her research interests include guidance, navigation, and control system of spacecraft and autonomous navigation of deep space explorers. She proposed many novel methods of astronomical navigation, and the research results are used in the Chang'e II and Mars exploration pre-research. E-mail:Supported by:
Xiaolin NING, Weiping YUAN, Yanhong LIU. A tightly coupled rotational SINS/CNS integrated navigation method for aircraft[J]. Journal of Systems Engineering and Electronics, 2019, 30(4): 770-782.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Results of the different navigation methods"
Method | Mean position error/m | Root mean square/m | Mean attitude error/(") | Mean velocity error/(m/s) | ||||||||
Longitude | Latitude | Longitude | Latitude | Pitch | Roll | Yaw | Eastern | Northern | ||||
SINS | 924.39 | 820.53 | 547.85 | 526.16 | 14.43 | 18.66 | 59.20 | 0.66 | 0.60 | |||
Rotational SINS | 786.85 | 313.39 | 505.08 | 218.87 | 10.05 | 10.10 | 43.38 | 0.43 | 0.39 | |||
The tightly coupled SINS/CNS integrated navigation method | 234.21 | 173.55 | 113.16 | 100.32 | 4.98 | 6.01 | 5.46 | 0.18 | 0.16 | |||
The tightly coupled rotational SINS/CNS integrated navigation | 33.55 | 33.52 | 27.11 | 22.02 | 1.24 | 0.96 | 0.97 | 0.04 | 0.06 |
Table 2
Results of the integrated navigation with different $\mathit{\boldsymbol{\theta_{bp}}}$ without initial errors"
Mean position error/m | Mean attitude error/(") | Mean velocity error/(m/s) | |||||||
Longitude | Latitude | Pitch | Roll | Yaw | Eastern | Northern | |||
0 | 20.51 | 11.94 | 0.16 | 0.24 | 0.60 | 0.01 | 0.02 | ||
30 | 17.05 | 10.46 | 0.11 | 0.17 | 0.53 | 0.01 | 0.01 | ||
45 | 13.24 | 6.94 | 0.11 | 0.14 | 0.49 | 0.01 | 0.01 | ||
60 | 15.37 | 8.28 | 0.13 | 0.14 | 0.48 | 0.01 | 0.01 | ||
90 | 18.52 | 10.46 | 0.15 | 0.16 | 0.46 | 0.01 | 0.01 |
Table 3
Results of the integrated navigation with different $\mathit{\boldsymbol{\theta_{bp}}}$ with initial errors"
Mean position error/m | Mean attitude error/(") | Mean velocity error/(m/s) | |||||||
Longitude | Latitude | Pitch | Roll | Yaw | Eastern | Northern | |||
0 | 33.55 | 33.52 | 1.24 | 0.96 | 0.97 | 0.04 | 0.06 | ||
30 | 34.75 | 34.64 | 1.27 | 0.98 | 0.94 | 0.04 | 0.06 | ||
45 | 34.96 | 35.16 | 1.26 | 0.10 | 0.90 | 0.04 | 0.06 | ||
60 | 35.67 | 35.92 | 1.28 | 1.01 | 0.94 | 0.04 | 0.06 | ||
90 | 36.83 | 37.54 | 1.31 | 1.05 | 0.94 | 0.04 | 0.06 |
Table 4
Results of the integrated navigation with different gyro drifts"
Gyro accuracy/(( | Mean position error/m | Mean attitude error/(") | Mean velocity error/(m/s) | ||||||
Longitude | Latitude | Pitch | Roll | Yaw | Eastern | Northern | |||
0.000 5 | 33.49 | 33.72 | 1.22 | 0.96 | 0.96 | 0.04 | 0.06 | ||
0.002 5 | 33.57 | 33.44 | 1.24 | 0.96 | 0.97 | 0.04 | 0.06 | ||
0.005 | 33.55 | 33.52 | 1.24 | 0.96 | 0.97 | 0.04 | 0.06 | ||
0.007 5 | 33.59 | 33.56 | 1.24 | 0.96 | 0.95 | 0.04 | 0.06 | ||
0.01 | 33.59 | 32.62 | 1.24 | 0.96 | 0.93 | 0.04 | 0.06 |
Table 5
Results of the integrated navigation with different accelerometer biases"
Accelerometer accuracy/μg | Mean position error/m | Mean attitude error/(") | Mean velocity error/(m/s) | ||||||
Longitude | Latitude | Pitch | Roll | Yaw | Eastern | Northern | |||
5 | 32.27 | 32.18 | 1.23 | 0.92 | 0.93 | 0.03 | 0.05 | ||
25 | 32.57 | 32.61 | 1.23 | 0.94 | 0.94 | 0.03 | 0.06 | ||
50 | 33.55 | 33.52 | 1.24 | 0.96 | 0.97 | 0.04 | 0.06 | ||
75 | 34.87 | 34.71 | 1.26 | 1.00 | 0.99 | 0.04 | 0.06 | ||
100 | 36.39 | 36.15 | 1.30 | 1.05 | 1.02 | 0.04 | 0.07 |
Table 6
Results of the integrated navigation with different star sensor accuracies"
Star sensor accuracy/(") | Mean position error/m | Mean attitude error/(") | Mean velocity error/(m/s) | ||||||
Longitude | Latitude | Pitch | Roll | Yaw | Eastern | Northern | |||
2 | 31.48 | 33.11 | 1.22 | 0.96 | 0.87 | 0.04 | 0.06 | ||
3 | 33.55 | 33.52 | 1.24 | 0.96 | 0.97 | 0.04 | 0.06 | ||
4 | 36.44 | 34.09 | 1.26 | 0.96 | 1.09 | 0.04 | 0.06 | ||
5 | 39.90 | 34.81 | 1.28 | 0.97 | 1.24 | 0.04 | 0.06 | ||
6 | 43.74 | 35.87 | 1.31 | 0.98 | 1.39 | 0.04 | 0.06 |
Table 7
Results of the integrated navigation with different IMU installation errors"
IMU installation error/(") | Mean position error/m | Mean attitude error/(") | Mean velocity error/(m/s) | ||||||
Longitude | Latitude | Pitch | Roll | Yaw | Eastern | Northern | |||
0 | 33.55 | 33.52 | 1.24 | 0.96 | 0.97 | 0.04 | 0.06 | ||
5 | 41.72 | 48.61 | 4.86 | 4.59 | 1.39 | 0.05 | 0.07 | ||
10 | 59.35 | 71.42 | 9.27 | 9.05 | 1.88 | 0.06 | 0.09 | ||
15 | 80.89 | 95.62 | 13.75 | 13.54 | 2.40 | 0.08 | 0.11 | ||
20 | 103.16 | 120.29 | 18.26 | 18.04 | 2.93 | 0.10 | 0.13 |
Table 8
Results of the integrated navigation with different star sensor installation errors"
Star sensor installation error/(") | Mean position error/m | Mean attitude error/(") | Mean velocity error/(m/s) | ||||||
Longitude | Latitude | Pitch | Roll | Yaw | Eastern | Northern | |||
0 | 33.55 | 33.52 | 1.24 | 0.96 | 0.97 | 0.04 | 0.06 | ||
5 | 126.92 | 102.56 | 1.84 | 1.41 | 6.85 | 0.06 | 0.10 | ||
10 | 269.05 | 218.20 | 3.37 | 2.70 | 13.24 | 0.10 | 0.19 | ||
15 | 412.17 | 335.68 | 4.96 | 4.08 | 19.74 | 0.15 | 0.29 | ||
20 | 555.69 | 453.22 | 6.56 | 5.49 | 26.31 | 0.20 | 0.38 |
1 | TITTERTON D, WESTON J. Strapdown inertial navigation technology. 2nd ed. Reston, VA: American Institute of Aeronautics and Astronautics, 2004. |
2 | SIGEL D A, WETTERGREEN D. Star tracker celestial localization system for a lunar rover. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007: 2851-2856. |
3 | CHEN H M, XIONG Z, QIAO L, et al. Application of CNSINS integrated navigation technology in high-altitude aircraft. Transducer&Microsystem Technologies, 2008, 27 (9): 4- 6. |
4 | HONG D, LIU G B, CHEN H M, et al. Application of EKF for missile attitude estimation based on "SINS/CNS" integrated guidance system. Proc. of the International Symposium on Systems and Control in Aeronautics and Astronautics, 2010: 1101-1104. |
5 |
WU X J, WANG X L. A SINS/CNS deep integrated navigation method based on mathematical horizon reference. Aircraft Engineering and Aerospace Technology, 2011, 83 (1): 26- 34.
doi: 10.1108/00022661111119892 |
6 |
HE Z, WANG X L, FANG J C. An innovative high-precision SINS/CNS deep integrated navigation scheme for the Mars rover. Aerospace Science and Technology, 2014, 39, 559- 566.
doi: 10.1016/j.ast.2014.06.007 |
7 | NING X L, LIU L L. A two-mode INS/CNS navigation method for lunar rovers. IEEE Trans. on Instrumentation and Measurement, 2014, 63(9): 2170-2179. |
8 | WANG R, XIONG Z, LIU J Y, et al. A new tightly-coupled INS/CNS integrated navigation algorithm with weighted multi-stars observations. Proc. of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 2015, 230(4): 698-712. |
9 | NING X L, WANG F, FANG J C. Implicit UKF and its observability analysis of satellite stellar refraction navigation system. Aerospace Science&Technology, 2016, 54, 49- 58. |
10 | GAO P Y, LI K, SONG T X, et al. An accelerometers size effect self-calibration method for tri-axis rotational inertial navigation system. IEEE Trans. on Industrial Electronics, 2017, 65(2): 1655-1664. |
11 | ZHENG Z C, HAN S L, YUE J, et al. Compensation for stochastic error of gyros in a dual-axis rotational inertial navigation system. Journal of Navigation, 2015, 69 (1): 1- 14. |
12 |
LV P, LIU J Y, LAI J Z, et al. Decrease in accuracy of a rotational SINS caused by its rotary table's errors. International Journal of Advanced Robotic Systems, 2014, 11 (1): 1- 10.
doi: 10.5772/56810 |
13 | WANG B, REN Q, DENG Z Z, et al. A self-calibration method for nonorthogonal angles between gimbals of rotational inertial navigation system. IEEE Trans. on Industrial Electronics, 2015, 62(4): 2353-2362. |
14 |
WU W R, NING X L, LIU L L. New celestial assisted INS initial alignment method for lunar explorer. Journal of System Engineering and Electronics, 2013, 24 (1): 108- 117.
doi: 10.1109/JSEE.2013.00014 |
15 | SUN Y, WANG T J, GAO Y B, et al. Computation structure of rotating strapdown INS. Journal of Chinese Inertial Technology, 2013, 21 (1): 10- 15. |
16 | LI K, XU Y F, ZHANG Z Y, et al. Errors autocompensation principle analysis and experiments verification for rotational inertial navigation systems. Systems Engineering and Electronics, 2011, 33 (10): 2268- 2271. |
17 | LI K, GAO P Y, WANG L, et al. Analysis and improvement of attitude output accuracy in rotation inertial navigation system. Mathematical Problems in Engineering, 2015, 2015, 768174. |
18 | SUN W, XU A G, CHE L N, et al. Accuracy improvement of SINS based on IMU rotational motion. IEEE Aerospace&Electronic Systems Magazine, 2012, 27 (8): 4- 10. |
19 |
LV P, LAI J Z, LIU J Y, et al. Compensation effects of gyros'stochastic errors in a rotational inertial navigation system. Journal of Navigation, 2014, 67 (6): 1069- 1088.
doi: 10.1017/S0373463314000319 |
20 |
ZHOU Y, DENG Z H, WANG B, et al. Analytical method of the performance of the rotational ins based on the spatial accumulation of the inertial instrument biases. IFAC Proceedings Volumes, 2014, 47 (3): 9649- 9653.
doi: 10.3182/20140824-6-ZA-1003.00544 |
21 |
RUFINO G, ACCARDO D. Enhancement of the centroiding algorithm for star tracker measure refinement. Acta Astronautica, 2003, 53 (2): 135- 147.
doi: 10.1016/S0094-5765(02)00199-6 |
22 |
YOON H, LIM Y, BANG H. New star-pattern identification using a correlation approach for spacecraft attitude determination. Journal of Spacecraft and Rockets, 2011, 48 (1): 182- 186.
doi: 10.2514/1.49675 |
23 |
NING X L, WANG L H, WU W R, et al. A celestial assisted INS initialization method for lunar explorers. Sensors, 2011, 11 (7): 6991- 7003.
doi: 10.3390/s110706991 |
24 | JAFARZADEH S, LASCU C, FADALI M S. State estimation of induction motor drives using the unscented Kalman filter. IEEE Trans. on Industrial Electronics, 2012, 59(11): 4207-4216. |
25 | JULIER S J, UHLMANN J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92 (3): 401- 422. |
26 | HAVSTAD S A. Star sensor simulation for astroinertial guidance and navigation. Proc. of the SPIE, 1992: 74-84. |
27 |
WEI X G, ZHANG G J, FAN Q Y, et al. Star sensor calibration based on integrated modelling with intrinsic and extrinsic parameters. Measurement, 2014, 55, 117- 125.
doi: 10.1016/j.measurement.2014.04.026 |
28 | ISHIBASHI S, TSUKIOKA S, YOSHIDA H, et al. Accuracy improvement of an inertial navigation system brought about by the rotational motion. Proc. of the Oceans, 2007: 1-5. |
[1] | Jin Liu, Jie Ma, and Jinwen Tian. Pulsar/CNS integrated navigation based on federated UKF [J]. Journal of Systems Engineering and Electronics, 2010, 21(4): 675-681. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||