Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (4): 684-695.doi: 10.21629/JSEE.2019.04.06
• Electronics Technology • Previous Articles Next Articles
Hongwei ZHANG*(), Weixin XIE()
Received:
2018-11-19
Online:
2019-08-01
Published:
2019-08-29
Contact:
Hongwei ZHANG
E-mail:hongweiz@szu.edu.cn;wxxie@szu.edu.cn
About author:
ZHANG Hongwei was born in 1982. She is currently pursuing her Ph.D. degree in the College of Information Engineering at Shenzhen University. She received her B.S. degree in electronic engineering from Zhengzhou University in 2006 and M.S. degree from South China University of Technology in 2013. Her research interests are particle filtering and multiple target tracking. E-mail:Supported by:
Hongwei ZHANG, Weixin XIE. Constrained auxiliary particle filtering for bearings-only maneuvering target tracking[J]. Journal of Systems Engineering and Electronics, 2019, 30(4): 684-695.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
NARDONE S C, LINDGREN A G, KAI F G. Fundamental properties and performance of conventional bearings-only target motion analysis. IEEE Trans. on Automatic Control, 1984, 29 (9): 775- 787.
doi: 10.1109/TAC.1984.1103664 |
2 | BAR-SHALOM Y, LI X R, KIRUBARAJAN T. Estimation with applications to tracking and navigation. Hoboken, NJ: Wiley, 2001. |
3 |
SONG T L. Observability of target tracking with range-only measurements. IEEE Trans. on Aerospace and Electronic Systems, 1996, 32 (4): 1468- 1472.
doi: 10.1109/7.543868 |
4 |
YE M, ANDERSON B D O, YU C. Bearing-only measurement self-localization, velocity consensus and formation control. IEEE Trans. on Aerospace and Electronic Systems, 2017, 53 (2): 575- 586.
doi: 10.1109/TAES.2017.2651538 |
5 | LI X R, JILKOV V P. A survey of maneuvering target tracking:approximation techniques for nonlinear filtering. Signal and Data Processing of Small Targets, 2004, 5428 (62): 537- 550. |
6 | JULIER S J, UHLMANN J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92 (3): 401- 422. |
7 | LI W, CONG M, JIA Y, et al. Recursive filtering for complex networks using non-linearly coupled UKF. IET Control Theory&Applications, 2018, 12 (4): 549- 555. |
8 |
ANDIEU C, DOUCET A, HOLENSTEIN R. Particle Markov Chain Monte carlo methods. Journal of the Royal Statistical Society, 2010, 72 (3): 269- 342.
doi: 10.1111/j.1467-9868.2009.00736.x |
9 |
BERNTORP K, GROVER P. Feedback particle filter with data-driven gain-function approximation. IEEE Trans. on Aerospace and Electronic Systems, 2018, 54 (5): 2118- 2130.
doi: 10.1109/TAES.2018.2807559 |
10 | MERWE R V D, DOUCET A, FREITAS N D, et al. The unscented particle filter. Proc. of the International Conference on Neural Information Processing Systems, 2000, 563- 569. |
11 |
KONATOWSKI S, KANIEWSKI P, MATUSZEWSKI J. Comparison of estimation accuracy of EKF, UKF and PF filters. Annual of Navigation, 2016, 23 (1): 69- 87.
doi: 10.1515/aon-2016-0005 |
12 |
PITT M K, SHEPHARD N. Filtering via simulation:auxiliary particle filters. Publications of the American Statistical Association, 1999, 94 (446): 590- 599.
doi: 10.1080/01621459.1999.10474153 |
13 |
ÚBEDA-MEDINA L, ÁNGEL F. GARCÍA-FERNÁNDEZ, GRAJAL J. Adaptive auxiliary particle filter for track-beforedetect with multiple targets. IEEE Trans. on Aerospace and Electronic Systems, 2017, 53 (5): 2317- 2330.
doi: 10.1109/TAES.2017.2691958 |
14 |
LI X R, JILKOV V P. Survey of maneuvering target tracking. Part Ⅴ. Multiple-model methods. IEEE Trans. on Aerospace and Electronic Systems, 2005, 41 (4): 1255- 1321.
doi: 10.1109/TAES.2005.1561886 |
15 |
HENK A P, BAR-SHALOM, YAAKOV BLOM. The interacting multiple model algorithm for systems with markovian switching coefficients. IEEE Trans. on Automatic Control, 1988, 33 (8): 780- 783.
doi: 10.1109/9.1299 |
16 | LI J, ZHOU D, QIN L. Tracking filter for nonballistic near space targets based on MVSIMM algorithm. Proc. of the IEEE International Conference on Information and Automation, 2015, 1899- 1904. |
17 |
GARCÍA-FERNÁNDEZ Á F, SVENSSON L, MORELANDE M R, et al. Posterior linearization filter:principles and implementation using sigma points. IEEE Trans. on Signal Processing, 2015, 63 (20): 5561- 5573.
doi: 10.1109/TSP.2015.2454485 |
18 |
GARCÍA-FERNÁNDEZ Á F, SVENSSON L, SÄRKÄ S. Iterated posterior linearization smoother. IEEE Trans. on Automatic Control, 2017, 62 (4): 2056- 2063.
doi: 10.1109/TAC.2016.2592681 |
19 | SIMON D. Kalman filtering with state constraints:a survey of linear and nonlinear algorithms. IET Control Theory&Applications, 2010, 4 (8): 1303- 1318. |
20 | LI X R. Compatibility and modeling of constrained dynamic systems. Proc. of the International Conference on Information Fusion, 2016, 240- 247. |
21 | GARCÍA-FERNÁNDEZ Á F, MORELANDE M R, GRAJAL J. Mixture truncated unscented Kalman filtering. Proc. of the International Conference on Information Fusion, 2012, 479- 486. |
22 | ZHANG Y G, CHENG R, HUANG Y L, et al. Truncated adaptive cubature particle filter. Systems Engineering and Electronics, 2016, 22 (2): 383- 391. |
23 | WANG J H, CAO J, LI W. Cost reference particle filter algorithm of intelligent optimization. Systems Engineering and Electronics, 2017, 39 (12): 2857- 2862. |
24 | PRÜFERT U, TRÖLTZSCH F, WEISER M. The convergence of an interior point method for an elliptic control problem with mixed control-state constraints. Computational Optimization&Applications, 2008, 39 (2): 183- 218. |
25 | PRAKASH J, PATWARDHAN S C, SHAH S L. On the choice of importance distributions for unconstrained and constrained state estimation using particle filter. Journal of Process Control, 2001, 21 (1): 3- 16. |
26 |
AMOR N, BOUAYNAYA N, SHTERENBERG R, et al. On the convergence of constrained particle filters. IEEE Signal Processing Letters, 2017, 24 (6): 858- 862.
doi: 10.1109/LSP.2017.2696160 |
27 |
ELVIRA V, MIGUEZ J, DJURIC P M. Adapting the number of particles in sequential Monte Carlo methods through an online scheme for convergence assessment. IEEE Trans. on Signal Processing, 2017, 65 (7): 1781- 1794.
doi: 10.1109/TSP.2016.2637324 |
28 |
LI B, LIU C, CHEN W H. An auxiliary particle filtering algorithm with inequality constraints. IEEE Trans. on Automatic Control, 2017, 62 (9): 4639- 4646.
doi: 10.1109/TAC.2016.2624698 |
29 | KIM J, SUH T, RYU J. Inequality constrained Kalman filter for bearing-only target motion analysis. Proc. of the International Conference on Control, 2015, 1601- 1607. |
30 | LI L Q, XIE W X, LIU Z X. Auxiliary truncated particle filtering with least-square method for bearings-only maneuvering target tracking. IEEE Trans. on Aerospace and Electronic Systems, 2017, 52 (5): 2562- 2567. |
31 |
LINDSTEN F, BUNCH P, SÄRKÄ S, et al. Rao-Blackwellized particle smoothers for conditionally linear gaussian models. IEEE Journal of Selected Topics in Signal Processing, 2016, 10 (2): 353- 365.
doi: 10.1109/JSTSP.2015.2506543 |
32 | HOSTETTLER R, SARKKA S. Rao-Blackwellized Gaussian smoothing. IEEE Trans. on Automatic Control, 2018, 64 (1): 305- 312. |
33 |
ZHANG H, LI L, XIE W. Constrained multiple model particle filtering for bearings-only maneuvering target tracking. IEEE Access, 2018, 6, 51721- 51734.
doi: 10.1109/ACCESS.2018.2869402 |
34 | KIM S J, KOH K, LUSTIG M, et al. An interior-point method for large-scale l1-regularized logistic regression. IEEE Journal of Selected Topics in Signal Processing, 2008, 1 (4): 606- 617. |
35 | OZGEN S, ROSENTHAL F, MAYER J, et al. Retrodiction of data association probabilities via convex optimization. Proc. of the 21st International Conference on Information Fusion, 2018, 2430- 2436. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||