1 |
TURYN R J. The linear generation of the legendre sequence. Journal of the Society for Industrial and Applied Mathematics, 1964, 12 (1): 115- 116.
doi: 10.1137/0112010
|
2 |
DING C, HESSESETH T, SHAN W. On the linear complexity of Legendre sequences. IEEE Trans. on Information Theory, 1998, 44 (3): 1276- 1278.
doi: 10.1109/18.669398
|
3 |
STANTON R G, SPROTT D A. A family of difference sets. Canadian Journal of Mathematics, 1958, 6 (1): 73- 77.
|
4 |
DING C. Binary cyclotomic generators. Lecture Notes in Computer Science, 1994, 1008, 29- 60.
|
5 |
DING C. Linear complexity of generalized cyclotomic binary sequences of order 2. Finite Fields and Their Applications, 1997, 3 (2): 159- 174.
doi: 10.1006/ffta.1997.0181
|
6 |
DING C. Autocorrelation values of generalized cyclotomic sequences of order two. IEEE Trans. on Information Theory, 1998, 44 (4): 1699- 1702.
doi: 10.1109/18.681354
|
7 |
BAI E, FU X, XIAO G. On the linear complexity of generalized cyclotomic sequences of order four over Zpq. IEICE Trans. on Fundamentals, 2005, 88 (1): 392- 395.
|
8 |
BRANDSTÄTTER N, WINTERHOF A. Some notes of the two-prime generator of order 2. IEEE Trans. on Information Theory, 2005, 51 (10): 3654- 3657.
doi: 10.1109/TIT.2005.855615
|
9 |
DING C, HELLESETH T. New generalized cyclotomy and its application. Finite Fields and Their Applications, 1998, 4 (2): 140- 166.
doi: 10.1006/ffta.1998.0207
|
10 |
BAI E, LIU X. Generalized cyclotomic sequences of order four over Z pq and their autocorrelation values. Chinese Journal of Engineering Mathematics, 2008, 25 (5): 894- 900.
|
11 |
BAI E, LIU X, XIAO G. Lilnear complexity of new generelized cyclotomic sequences of order two of length pq. IEEE Trans. on Information Theory, 2005, 51 (5): 1849- 1853.
doi: 10.1109/TIT.2005.846450
|
12 |
YAN T, HONG L, XIAO G. The linear complexity of new generalized cyclotomic binary sequences of order four. Information Sciences, 2008, 178 (3): 807- 815.
|
13 |
JIN S, KIM Y, SONG H. Autocorrelation of new generalized cyclotomic sequences of period pn. IEICE Trans. on Fundamentals, 2010, 93 (11): 2345- 2348.
|
14 |
KE P, ZHANG J, ZHANG S. On the linear complexity and the autocorrelation of generalized cyclotomic binary sequences of length 2pm. Designs, Codes and Cryptography, 2013, 67 (3): 325- 339.
doi: 10.1007/s10623-012-9610-9
|
15 |
LI S, CHEN Z, SUN R, et al. On the randomness of generalized cyclotomic sequences of order two and length pq. IEICE Trans. on Fundamentals, 2007, 90 (9): 2037- 2041.
|
16 |
LI S, CHEN Z, FU X, et al. Autocorrelation values of new generalized cyclotomic sequences of order two and length pq. Journal of Computer Science and Technology, 2007, 22 (6): 830- 834.
doi: 10.1007/s11390-007-9099-2
|
17 |
Meidl W. Remarks on a cyclotomic sequence. Designs, Codes and Cryptography, 2009, 51 (1): 33- 43.
|
18 |
YAN T, SUN R, XIAO G. Autocorrelation and linear complexity of the new generalized cyclotomic sequences. IEICE Trans. on Fundamentals, 2008, 90 (4): 857- 864.
|
19 |
YAN T, DU X, XIAO G, et al. Linear complexity of binary Whiteman generalized cyclotomic sequences of order 2k. Information Sciences, 2009, 179 (7): 1019- 1023.
doi: 10.1016/j.ins.2008.11.006
|
20 |
YAN T, HUANG B, XIAO G. Cryptographic properties of some binary generalized cyclotomic sequences with the length p2. Information Sciences, 2008, 178 (4): 1078- 1086.
|
21 |
YAN T, LI S, XIAO G. On thelinear complexity of generalized cyclotomic sequences with the period pm. Appliced Mathematics Letters, 2008, 21 (2): 187- 193.
|
22 |
YAN T, CHEN Z, XIAO G. Linear complexity of Ding generalized cyclotomic sequences. Journal of Shanghai University, 2007, 11 (1): 22- 26.
doi: 10.1007/s11741-007-0103-4
|
23 |
ZHANG J, ZHAO C, MA X. Linear complexity of generalized cyclotomoc binary sequences of length 2pm. Applicable Algebra in Engineering, Communication and Computing, 2010, 21 (2): 93- 108.
doi: 10.1007/s00200-009-0116-2
|
24 |
CHEN Z, DU X, WU C. Pseodu-randomness of certain sequences of k symbols with length pq. Journal of Computer Science and Technology, 2011, 26 (2): 276- 282.
doi: 10.1007/s11390-011-9434-5
|
25 |
CHEN Z, DU X. Linear complexity and auto-correlation values of a polyphase generalized cyclotomic sequence of length pq. Frontiers of Computer Science, 2010, 4 (4): 529- 535.
doi: 10.1007/s11704-010-0329-3
|
26 |
DING C, HELLESETH T. On cyclotomic generator of order r. Information Processing Letters, 1998, 66 (1): 21- 25.
|
27 |
CHANG Z, ZHOU Y, KE P. Linear complexity of new generalized cyclotomic sequences of order two and length pqr. Acta Electronica Science, 2015, 43 (1): 166- 170.
|
28 |
LIU L, YANG X, DU X, et al. On the linear complexity of new generalized cyclotomic binary sequences of order two and period pqr. Tsinghua Science and Technology, 2016, 21 (3): 295- 301.
doi: 10.1109/TST.2016.7488740
|
29 |
LYU C, XIAO G Z, YAN T J. On linear complexity of a new generalized cyclotmic sequence of order two over $\mathbb{Z}$p1p2p3. Journal of Computational Information Systems, 2015, 11 (17): 6355- 6362.
|
30 |
CUSICK T W, DING C, RENVALL A. Stream cipher and number theory. Amsterdam: North-Holland, 1988.
|
31 |
LIDL R, NIEDERREITER H. Finite fields. 2nd ed Cambridge: Cambridge University Press, 1997.
|