Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (4): 642-650.doi: 10.21629/JSEE.2019.04.02
• Electronics Technology • Previous Articles Next Articles
Kun CHENG1(), Qi SHEN2,3(
), Shengkai LIAO2,3,*(
), Chengzhi PENG2,3(
)
Received:
2018-12-13
Online:
2019-08-01
Published:
2019-08-29
Contact:
Shengkai LIAO
E-mail:chengkun@live.cn;shenqi@ustc.edu.cn;skliao@ustc.edu.cn;pcz@ustc.edu.cn
About author:
CHENG Kun was born in 1984. He received his master's degree in Department of Free Electronic Laser from Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China, in 2011. He is currently working toward his Ph.D. degree in quantum key distribution at the University of Science and Technology of China, Hefei, China. E-mail: Supported by:
Kun CHENG, Qi SHEN, Shengkai LIAO, Chengzhi PENG. Implementation of encoder and decoder for LDPC codes based on FPGA[J]. Journal of Systems Engineering and Electronics, 2019, 30(4): 642-650.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | GALLAGER R. Low-density parity-check codes. IRE Trans. on Information Theory, 1962, 8 (1): 21- 28. |
2 | MACKAY D J C. Good error-correcting codes based on very sparse matrices. IEEE Trans. on Information Theory, 1999, 45 (2): 399- 431. |
3 |
SHANNON C E. A mathematical theory of communication. Bell System Technical Journal, 1948, 27 (3): 379- 423.
doi: 10.1002/j.1538-7305.1948.tb01338.x |
4 | PHROMSA-ARD T, SANGWONGNGAM P, SRIPIMANWAT K, et al. Low-complexity key reconciliation algorithm using LDPC bit-flipping decoding for quantum key distribution. Proc. of the International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2014: 1-5. |
5 | CUI K, WANG J, ZHANG H F, et al. A real-time design based on FPGA for expeditious error reconciliation in QKD system. IEEE Trans. on Information Forensics&Security, 2013, 8 (1): 184- 190. |
6 |
LIAO S K, CAI W Q, LIU W Y, et al. Satellite-to-ground quantum key distribution. Nature, 2017, 549 (7670): 43- 47.
doi: 10.1038/nature23655 |
7 |
LIAO S K, CAI W Q, HANDSTEINER J, et al. Satelliterelayed intercontinental quantum network. Physical Review Letters, 2018, 120 (3): 030501.
doi: 10.1103/PhysRevLett.120.030501 |
8 | HU X Y, ELEFTHERIOU E, ARNOLD D M. Regular and irregular progressive edge-growth tanner graphs. IEEE Trans. on Information Theory, 2005, 51 (1): 386- 398. |
9 | LIN K H, CHANG R C, WU S D. Architecture of the modified block-type low-density parity-check code decoding design. Proc. of the 6th International Conference on Information, Communications&Signal Processing, 2007: 1-4. |
10 |
HAN G, GUAN Y L, KONG L. Construction of irregular QCLDPC codes via masking with ACE optimization. IEEE Communications Letters, 2014, 18 (2): 348- 351.
doi: 10.1109/LCOMM.2014.010214.132463 |
11 | LI M R, CHOU H C, UENG Y L, et al. A low-complexity LDPC decoder for NAND flash applications. Proc. of the IEEE International Symposium on Circuits and Systems, 2014: 213-216. |
12 |
HO K C, CHEN C L, CHANG H C. A 520k (18900, 17010) array dispersion LDPC decoder architectures for NAND flash memory. IEEE Trans. on Very Large Scale Integration Systems, 2016, 24 (4): 1293- 1304.
doi: 10.1109/TVLSI.2015.2464092 |
13 | GENTILE G, ROVINI M, FANUCCI L. Low-complexity architectures of a decoder for IEEE 802.16e LDPC codes. Proc. of the 10th Euromicro Conference on Digital System Design Architectures, Methods and Tools, 2007: 369-375. |
14 | LI Z, CHEN L, ZENG L, et al. Efficient encoding of quasicyclic low-density parity-check codes. IEEE Trans. on Communications, 2006, 54 (1): 71- 81. |
15 | PEARL J. Probabilistic reasoning in intelligent systems:networks of plausible inference. San Mateo, CA: Morgan Kaufmann, 1988. |
16 | CHEN J, FOSSORIER M P C. Near optimum universal belief propagation based decoding of low-density parity check codes. IEEE Trans. on Communications, 2002, 50 (3): 406- 414. |
17 | LI M M, LI J P, CAI C S. LDPC codes with the layered LLRBP algorithm for 3GPP. Applied Mechanics and Materials, 2014, 462, 720- 723. |
18 |
TANNER R M. A recursive approach to low complexity codes. IEEE Trans. on Information Theory, 1981, 27 (5): 533- 547.
doi: 10.1109/TIT.1981.1056404 |
19 | WIBERG N. Codes and decoding on general graphs. Linkoping, Sweden: Linkoping University, 1996. |
20 | MACKAY D J C. Good error-correcting codes based on very sparse matrices. IEEE Trans. on Information Theory, 1999, 45 (3): 399- 432. |
21 | RICHARDSON T, URBANKE R. The capacity of low-density parity-check codes under message-passing decoding. IEEE Trans. on Information Theory, 2001, 47 (2): 599- 618. |
22 |
RICHARDSON T, SHOKROLLAHI A, URBANKE R. Design of capacity-approaching low density parity check codes. IEEE Trans. on Information Theory, 2001, 47 (2): 619- 637.
doi: 10.1109/18.910578 |
23 | KSCHISCHANG F R, FREY B J, LOELIGER H A. Factor graphs and the sum-product algorithm. IEEE Trans. on Information Theory, 2001, 47 (2): 498- 519. |
24 | ARUNA S, ANBUSELVI M. FFT-SPA based non-binary LDPC decoder for IEEE 802.11n standard. Proc. of the International Conference on Communication and Signal Processing, 2013: 566-569. |
25 |
BUTLER B K, SIEGEL P H. Error floor approximation for LDPC codes in the AWGN channel. IEEE Trans. on Information Theory, 2014, 60 (12): 7416- 7441.
doi: 10.1109/TIT.2014.2363832 |
26 | RAJAGOPAL A, KARIBASAPPA K, PATEL K S V. Design of SPA decoder for CDMA applications. Proc. of the International Conference on Intelligent Computing and Control, 2017: 1-6. |
27 | CHEN Y, CHU C, HE J. FPGA implementation and verification of LDPC minimum sum algorithm decoder with weight (3, 6) regular parity check matrix. Proc. of the IEEE 11th International Conference on Electronic Measurement&Instruments, 2013: 682-686. |
28 | KONG L, JIANG Y, HAN G, et al. Improved min-sum decoding for 2-D intersymbol interference channels. IEEE Trans. on Magnetics, 2014, 50 (11): 1- 4. |
29 | CHEN Y H, SU M L, SYU H T, et al. A comparison of error performance for iterative calculation in MSA decoder for LDPC nonregular parity check matrix in 16QAM system. Proc. of the International Symposium on Computer, Consumer and Control, 2016: 938-941. |
30 | HATAMI H, MITCHELL D G M, COSTELLO D J, et al. Lower bounds for quantized LDPC min-sum decoders based on absorbing sets. Proc. of the 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2017: 694-699. |
31 | MYUNG S, PARK S, KIM K, et al. Offset and normalized min-sum algorithms for ATSC 3.0 LDPC decoder. IEEE Trans. on Broadcasting, 2017, 63 (4): 734- 739. |
32 |
WU X, JIANG J, ZHAO C. Decoding optimization for 5G LDPC codes by machine learning. IEEE Access, 2018, 6, 50179- 50186.
doi: 10.1109/ACCESS.2018.2869374 |
33 | LI S, ZHANG Q, CHEN Y, et al. A high-throughput QCLDPC decoder for near-earth application. Proc. of the 23rd IEEE International Conference on Digital Signal Processing, 2018: 1-4. |
34 | MAAMMAR N E, BRI S, FOSHI J. Layered offset min-sum decoding for low density parity check codes. Proc. of the International Symposium on Advanced Electrical and Communication Technologies, 2018: 1-5. |
35 | YOON C, CHOI E, CHEONG M, et al. Arbitrary bit generation and correction technique for encoding QC-LDPC codes with dual-diagonal parity structure. Proc. of the Wireless Communications and Networking Conference, 2007: 662-666. |
36 | LIU D, LIU H, ZHANG B. Study on encoding algorithms for QC-LDPC codes with dual-diagonal parity check matrix. Journal of National University of Defense Technology, 2014, 2, 26. |
[1] | Bing Liu, Jun Gao, Wei Tao, and Gaoqi Dou. Weighted symbol-flipping decoding algorithm for nonbinary LDPC codes with flipping patterns [J]. Journal of Systems Engineering and Electronics, 2011, 22(5): 848-855. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||