Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (3): 613-623.doi: 10.21629/JSEE.2019.03.18
• Reliability • Previous Articles Next Articles
Junyuan WANG(), Jimin YE*(), Pengfei XIE()
Received:
2018-05-14
Online:
2019-06-01
Published:
2019-07-04
Contact:
Jimin YE
E-mail:jywang215@stu.xidian.edu.cn;jmye@mail.xidian.edu.cn;PengfeiXie@stu.xidian.edu.cn
About author:
WANG Junyuan was born in 1987. He received his B.S. degree in mathematics and applied mathematics in 2011, his M.S. degree in Probability theory and mathematical statistics in 2014. Now he is a Ph.D. candidate in Xidian University, Xi'an China. His research interests are applied stochastic processes, maintenance theory and reliability analysis. E-mail:Supported by:
Junyuan WANG, Jimin YE, Pengfei XIE. New repairable system model with two types repair based on extended geometric process[J]. Journal of Systems Engineering and Electronics, 2019, 30(3): 613-623.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Values of $\mathit{\boldsymbol{C(T = 50, N)}}$ and $\mathit{\boldsymbol{C(\infty, N)}}$"
| ||
1 | 9.53 | 10.48 |
2 | –214.70 | –202.32 |
3 | –276.16 | –254.22 |
4 | –300.39 | –272.03 |
5 | ||
6 | –308.63 | –272.22 |
7 | –302.14 | –276.39 |
8 | –290.71 | –250.67 |
9 | –274.93 | –234.70 |
10 | –255.15 | –215.89 |
11 | –231.72 | –194.61 |
12 | –205.08 | –171.24 |
13 | –175.86 | –146.25 |
14 | –144.90 | –120.21 |
15 | –113.22 | –93.79 |
16 | –81.94 | –67.70 |
17 | –52.14 | –42.64 |
18 | –24.73 | –19.28 |
19 | –0.35 | 1.91 |
20 | 20.66 | 20.59 |
21 | 38.26 | 36.66 |
22 | 52.63 | 50.14 |
23 | 64.11 | 61.21 |
24 | 73.10 | 70.14 |
25 | 80.04 | 77.21 |
26 | 85.30 | 82.74 |
27 | 89.26 | 87.00 |
28 | 92.20 | 90.26 |
29 | 94.37 | 92.73 |
30 | 95.96 | 94.59 |
Table 2
Values of $\mathit{\boldsymbol{C(T, N)}}$ and $\mathit{\boldsymbol{f(N)}}$ when $\mathit{\boldsymbol{T = 50}}$"
| ||
1 | 9.53 | 0.058 6 |
2 | –214.70 | 0.129 3 |
3 | –276.16 | 0.285 9 |
4 | –300.39 | 0.613 7 |
5 | 1.166 9 | |
6 | –308.63 | 1.944 1 |
7 | –302.14 | 2.866 6 |
8 | –290.71 | 3.812 4 |
9 | –274.93 | 4.679 7 |
10 | –255.15 | 5.419 6 |
11 | –231.72 | 6.027 6 |
12 | –205.08 | 6.521 0 |
13 | –175.86 | 6.922 6 |
14 | –144.90 | 7.252 5 |
15 | –113.22 | 7.526 7 |
16 | –81.94 | 7.757 2 |
17 | –52.14 | 7.952 8 |
18 | –24.73 | 8.119 8 |
19 | –0.35 | 8.263 3 |
20 | 20.66 | 8.387 1 |
21 | 38.26 | 8.494 0 |
22 | 52.63 | 8.586 6 |
23 | 64.11 | 8.667 0 |
24 | 73.10 | 8.736 7 |
25 | 80.04 | 8.797 3 |
26 | 85.30 | 8.849 9 |
27 | 89.26 | 8.895 6 |
28 | 92.20 | 8.935 4 |
29 | 94.37 | 8.969 9 |
30 | 95.96 | 9.000 0 |
Table 3
Values of $\mathit{\boldsymbol{C(T = 50, N)}}$ when $\mathit{\boldsymbol{p_n = 0}}$"
1 | 9.53 | 10.58 |
2 | -214.70 | -167.62 |
3 | -276.16 | -210.89 |
4 | -300.39 | |
5 | -205.71 | |
6 | -308.63 | -183.40 |
7 | -302.14 | -153.77 |
8 | -290.71 | -119.66 |
9 | -274.93 | -83.79 |
10 | -255.15 | -48.77 |
11 | -231.72 | -16.74 |
12 | -205.08 | 10.91 |
13 | -175.86 | 33.60 |
14. | -144.90 | 51.46 |
15 | -113.22 | 65.04 |
16 | -81.94 | 75.10 |
17 | -52.14 | 82.40 |
18 | -24.73 | 87.62 |
19 | -0.35 | 91.31 |
20 | 20.66 | 93.91 |
21 | 38.26 | 95.72 |
22 | 52.63 | 96.99 |
23 | 64.11 | 97.87 |
24 | 73.10 | 98.49 |
25 | 80.04 | 98.92 |
26 | 85.30 | 99.23 |
27 | 89.26 | 99.44 |
28 | 92.20 | 99.60 |
29 | 94.37 | 99.71 |
30 | 95.96 | 99.78 |
Table 4
Optimal $\mathit{\boldsymbol{N_{T_i }^*}}$ and $\mathit{\boldsymbol{C(T_i, N_{T_i }^*)}}$ for different $\mathit{\boldsymbol{\lambda, \mu, \gamma}}$, when $\mathit{\boldsymbol{T_i = 100}}$"
0.1 | 5 | –309.049 9 | 0.1 | 5 | –309.046 0 | 0.1 | 3 | –122.573 6 |
0.2 | 6 | –169.484 4 | 0.2 | 5 | –309.048 2 | 0.2 | 3 | –188.414 9 |
0.3 | 7 | –68.949 9 | 0.3 | 5 | –309.049 0 | 0.3 | 4 | –226.042 6 |
0.4 | 8 | 1.184 8 | 0.4. | 5 | –309.049 3 | 0.4 | 4 | –249.808 1 |
0.5 | 9 | 48.156 7 | 0.5 | 5 | –309.049 5 | 0.5 | 5 | –266.136 0 |
0.6 | 11 | 76.646 3 | 0.6 | 5 | –309.049 7 | 0.6 | 5 | –280.169 3 |
0.7 | 14 | 92.387 9 | 0.7 | 5 | –309.049 8 | 0.7 | 5 | –280.870 2 |
0.8 | 18 | 98.797 1 | 0.8 | 5 | –309.049 9 | 0.8 | 5 | –299.299 7 |
0.9 | 30 | 99.996 6 | 0.9 | 5 | –309.049 9 | 0.9 | 5 | –306.111 7 |
Table 5
Optimal $\mathit{\boldsymbol{N_{T_i }^*}}$ and $\mathit{\boldsymbol{C(T, N_{T_i }^*)}}$ for different $\mathit{\boldsymbol{a, b, c, }}$ when $\mathit{\boldsymbol{T_i = 100}}$"
1.11 | 6 | –320.650 9 | 0.05 | 5 | –309.045 1 | 0.1 | 3 | –234.482 9 |
1.12 | 6 | –317.634 7 | 0.10 | 5 | –309.049 0 | 0.2 | 3 | –257.919 0 |
1.13 | 6 | –314.639 8 | 0.15 | 5 | –309.049 5 | 0.3 | 4 | –267.773 5 |
1.14 | 6 | –311.666 8 | 0.20 | 5 | –309.049 7 | 0.4 | 4 | –283.549 6 |
1.15 | 5 | –309.049 9 | 0.25 | 5 | –309.049 7 | 0.5 | 4 | –292.431 2 |
1.16 | 5 | –306.571 2 | 0.30 | 5 | –309.049 8 | 0.6 | 5 | –304.089 9 |
1.17 | 5 | –304.111 2 | 0.35 | 5 | –309.049 8 | 0.7 | 6 | –313.280 2 |
1.18 | 5 | –301.670 3 | 0.40 | 5 | –309.049 8 | 0.75 | 6 | –318.057 6 |
1.19 | 5 | –299.248 7 | 0.45 | 5 | –309.049 9 | 0.80 | 7 | –322.309 5 |
1.20 | 5 | –296.846 4 | 0.5 | 5 | –309.049 9 | 0.85 | 7 | –327.189 9 |
1.25 | 5 | –285.131 5 | 0.55 | 5 | –309.049 9 | 0.90 | 8 | –331.667 7 |
1.30 | 5 | –273.918 1 | 0.60 | 5 | –309.049 9 | 0.95 | 8 | –336.318 8 |
1.35 | 5 | –263.209 6 | 0.65 | 5 | –309.049 9 | 0.96 | 9 | –337.245 7 |
1.40 | 4 | –253.969 9 | 0.70 | 5 | –309.049 9 | 0.97 | 9 | –338.280 9 |
1.45 | 4 | –245.801 5 | 0.80 | 5 | –309.049 9 | 0.98 | 9 | –339.279 9 |
1.50 | 4 | –237.988 2 | 0.90 | 5 | –309.049 9 | 0.99 | 9 | –340.244 3 |
1 |
BROWN M, PROSCHAN F. Imperfect repair. Journal of Applied Probability, 1983, 20, 851- 859.
doi: 10.2307/3213596 |
2 |
LAM Y. Geometric process and replacement problem. Acta Mathematicate Applicatae, 1988, 4, 366- 377.
doi: 10.1007/BF02007241 |
3 |
LAM Y. A note on the optimal replacement problem. Advances in Applied Probability, 1988, 20, 479- 482.
doi: 10.2307/1427402 |
4 |
STADJE W, ZUCKERMAN D. Optimal strategies for some repair replacement models. Advances in Applied Probability, 1990, 22, 641- 656.
doi: 10.2307/1427462 |
5 |
ZHANG Y L. A bivariate optimal replacement policy for a repairable system. Journal of Applied Probability, 1994, 31, 1123- 1127.
doi: 10.2307/3215336 |
6 |
LAM Y. A geometric process δ-shock maintenance model. IEEE Trans. on Reliability, 2009, 58 (2): 389- 396.
doi: 10.1109/TR.2009.2020261 |
7 |
WANG G J, ZHANG Y L. Optimal periodic preventive repair and replacement policy assuming geometric process repair. IEEE Trans. on Reliability, 2006, 55 (1): 118- 122.
doi: 10.1109/TR.2005.863808 |
8 |
LAM Y. A geometric process maintenance model with preventive repair. European Journal of Operational Research, 2007, 182, 806- 819.
doi: 10.1016/j.ejor.2006.08.054 |
9 | WU S, CLEMENTS-CROOME D. A novel repair model for imperfect maintenance. IMA Journal of Management Mathematics, 2018, 17 (3): 235- 243. |
10 |
CHENG G Q, LI L. A geometric process repair model with inspections and its optimization. International Journal of Systems Science, 2012, 43 (9): 1650- 1655.
doi: 10.1080/00207721.2010.549586 |
11 |
ZHANG Y L, WANG G J. A bivariate optimal repairreplacement model using geometric processes for a cold standby repairable system. Engineering Optimization, 2006, 38 (5): 609- 619.
doi: 10.1080/16066350600608877 |
12 | ZHANG Y L, YAM R C, ZUO M J. A bivariate optimal replacement policy for a multistate repairable system. Reliability Engineering & System Safety, 2007, 92 (4): 535- 542. |
13 |
WANG G J, ZHANG Y L. A bivariate mixed policy for a simple repairable system based on preventive repair and failure repair. Applied Mathematical Modelling, 2009, 33 (8): 3354- 3359.
doi: 10.1016/j.apm.2008.11.008 |
14 | ZHANG Y L, WANG G J. A geometric process repair model for a repairable cold standby system with priority in use and repair. Reliability Engineering & System Safety, 2009, 94 (11): 1782- 1787. |
15 | LIANG X, LAM Y, LI Z. Optimal replacement policy for a general geometric process model with δ-shock. International Journal of Systems Science, 2011, 42 (11): 2021- 2034. |
16 | CHANG S H, CHOI D W. Performance analysis of a finitebuffer discrete-time queue with bulk arrival, bulk service and vacations. Computers & Operations Research, 2005, 32 (9): 2213- 2234. |
17 | JIA J, WU S. A replacement policy for a repairable system with its repairman having multiple vacations. Computers & Industrial Engineering, 2009, 57 (1): 156- 160. |
18 |
SHEU S H, CHANG C C, ZHANG Z G, et al. A note on replacement policy for a system subject to non-homogeneous pure birth shocks. IEEE Trans. on Reliability, 2012, 61 (3): 741- 748.
doi: 10.1109/TR.2012.2206270 |
19 |
SHEU S H, ZHANG Z G, CHIEN Y H, et al. Age replacement policy with lead-time for a system subject to nonhomogeneous pure birth shocks. Applied Mathematical Modelling, 2013, 37 (14-15): 7717- 7725.
doi: 10.1016/j.apm.2013.03.017 |
20 | SHEU S H, CHIEN Y H, CHANG C C, et al. Optimal trivariate replacement policies for a deteriorating system. Quality Technology & Quantitative Management, 2014, 11 (3): 307- 320. |
21 |
CHIEN Y H, CHEN J A. Optimal maintenance policy for a system subject to damage in a discrete time process. Reliability Engineering and System Safety, 2012, 103, 1- 10.
doi: 10.1016/j.ress.2012.03.002 |
22 | ZHANG Y L, WANG G J. An optimal age-replacement policy for a simple repairable system with delayed repair. Communications in Statistics-Theory and Methods, 2016, 46 (6): 2837- 2850. |
23 | ZHANG Y L, WANG G J. An extended geometric process repair model for a cold standby repairable system with imperfect delayed repair. International Journal of Systems Science:Operations & Logistics, 2016, 3 (3): 163- 175. |
24 |
ZHANG Y L, WANG G J. An extended geometric process repair model with delayed repair and slight failure type. Communications in Statistics-Theory and Methods, 2017, 46 (1): 427- 437.
doi: 10.1080/03610926.2014.995824 |
25 | ROSS S M. Stochastic processes. 2nd ed. New York: Wiley, 1996. |
26 | LAM Y. The geometric process and its applications. Signapore: World Scientific, 2007. |
[1] | Ning MA, Jimin YE, Junyuan WANG. A generalized geometric process based repairable system model with bivariate policy [J]. Journal of Systems Engineering and Electronics, 2021, 32(3): 631-641. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||