Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (3): 564-572.doi: 10.21629/JSEE.2019.03.14
• Systems Engineering • Previous Articles Next Articles
Received:
2018-05-04
Online:
2019-06-01
Published:
2019-07-04
Contact:
Xiaodan ZHANG
E-mail:bkdzxd@163.com;1614041218@qq.com
About author:
ZHANG Xiaodan was born in 1959. She is a professor of mathematics in School of Mathematics and Physics, University of Science and Technology Beijing. In 2009, she was a visiting professor at DIMACS, Rutgers University, USA. Her research interests include data mining and dynamical systems. E-mail:Supported by:
Xiaodan ZHANG, Hongye QI. Construction and application of pre-classified smooth semi-supervised twin support vector machine[J]. Journal of Systems Engineering and Electronics, 2019, 30(3): 564-572.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 3
Linear classification effect of each classifier"
Dataset | Performance | Lap-SVM | Lap-TSVM | 6STSVM | 6S3TSVM | 6PS3TSVM |
Hepatitis | Accuracy/% | 70.24 | 70.24 | 69.05 | 72.62 | 98.81 |
Time/s | 0.063 101 | 0.045 293 | 0.088 500 | 0.236 362 | 0.209 835 | |
Glass 7 | Accuracy/% | 96.09 | 100.00 | 84.38 | 97.66 | 91.41 |
Time/s | 0.134 170 | 0.085 226 | 0.163 357 | 0.213 701 | 0.180 259 | |
Heart-statlog | Accuracy/% | 63.58 | 85.19 | 85.80 | 88.89 | 91.36 |
Time/s | 0.227 010 | 0.118 954 | 0.545 303 | 0.517 258 | 0.417 952 | |
Ecoli 12 | Accuracy/% | 65.67 | 65.67 | 62.69 | 84.08 | 84.08 |
Time/s | 0.310 435 | 0.259 667 | 0.127 639 | 0.232 469 | 0.194 074 | |
BUPA | Accuracy/% | 69.57 | 73.43 | 70.05 | 71.98 | 90.34 |
Time/s | 0.357 661 | 0.178 551 | 0.193 258 | 0.506 778 | 0.300 107 | |
Monk_3 | Accuracy/% | 85.66 | 87.98 | 78.68 | 86.82 | 97.29 |
Time/s | 0.566 320 | 0.254 497 | 0.111 041 | 0.287 189 | 0.148 065 | |
Haberman | Accuracy/% | 73.77 | 74.86 | 61.75 | 78.14 | 68.85 |
Time/s | 0.274 577 | 0.128 810 | 0.297 550 | 0.534 159 | 0.383 161 | |
Monk_2 | Accuracy/% | 67.18 | 67.18 | 64.48 | 69.11 | 76.83 |
Time/s | 0.550 840 | 0.212 833 | 0.168 346 | 0.207 577 | 0.179 410 | |
CMC | Accuracy/% | 54.59 | 67.04 | 64.89 | 66.36 | 94.79 |
Time/s | 7.936 766 | 2.509 618 | 1.045 089 | 1.380 702 | 0.992 013 |
Table 4
Nonlinear classification effect of each classifier"
Dataset | Performance | Lap-SVM | Lap-TSVM | 6STSVM | 6S3TSVM | 6PS3TSVM |
Hepatitis | Accuracy/% | 70.24 | 55.95 | 63.10 | 73.81 | 98.81 |
Time/s | 0.110 433 | 0.094 775 | 1.279 270 | 0.345 278 | 0.048 696 | |
Glass 7 | Accuracy/% | 13.28 | 86.72 | 90.63 | 97.66 | 99.22 |
Time/s | 0.246 589 | 0.256 636 | 0.208 192 | 1.391 056 | 0.137 083 | |
Heart-statlog | Accuracy/% | 62.96 | 55.56 | 64.81 | 70.37 | 81.48 |
Time/s | 0.378 107 | 0.452 089 | 1.453 128 | 4.818 488 | 1.666 953 | |
Ecoli 12 | Accuracy/% | 65.67 | 65.67 | 60.20 | 65.67 | 81.59 |
Time/s | 0.562 233 | 0.746 396 | 1.478 087 | 0.674 261 | 0.123 923 | |
BUPA | Accuracy/% | 58.94 | 57.97 | 60.39 | 72.46 | 80.19 |
Time/s | 0.604 278 | 0.816 913 | 4.910 599 | 7.665 614 | 1.944 274 | |
Monk_3 | Accuracy/% | 77.91 | 52.71 | 97.29 | 83.33 | 87.21 |
Time/s | 0.920 689 | 1.449 394 | 9.139 692 | 1.508 401 | 0.489 755 | |
Haberman | Accuracy/% | 26.78 | 73.77 | 73.77 | 78.14 | 75.41 |
Time/s | 0.517 161 | 0.604 987 | 3.869 920 | 1.881 832 | 0.781 050 | |
Monk_2 | Accuracy/% | 67.18 | 67.18 | 57.53 | 67.18 | 79.15 |
Time/s | 0.947 632 | 1.410 740 | 9.481 854 | 1.634 288 | 0.362 668 | |
CMC | Accuracy/% | 66.48 | 57.30 | 70.10 | 65.12 | 71.91 |
Time/s | 11.894 136 | 38.772 600 | 233.004 053 | 14.691 282 | 9.590 188 |
Table 5
Classification accuracy of 6PS3TSVM under different proportions of unlabeled samples %"
Dataset | Proportion of unlabeled samples/% | ||||||||||
0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |
Hepatitis | 66.90 | 69.72 | 71.83 | 70.42 | 69.01 | 70.42 | 70.42 | 69.72 | 70.42 | 68.31 | 69.72 |
Glass 7 | 68.69 | 97.66 | 97.66 | 97.66 | 93.93 | 95.79 | 92.06 | 92.06 | 92.06 | 92.06 | 92.06 |
Heart-statlog | 82.22 | 82.22 | 82.59 | 82.22 | 82.59 | 82.59 | 82.59 | 82.22 | 82.22 | 82.22 | 82.22 |
Ecoli 12 | 71.43 | 70.54 | 80.06 | 79.46 | 81.55 | 80.65 | 82.14 | 80.06 | 84.23 | 77.08 | 79.17 |
BUPA | 67.54 | 67.54 | 68.12 | 67.83 | 67.83 | 66.96 | 67.54 | 67.25 | 69.28 | 66.96 | 68.41 |
Monk_3 | 69.21 | 77.31 | 79.17 | 80.79 | 83.33 | 80.09 | 78.94 | 80.09 | 79.63 | 79.86 | 80.32 |
Haberman | 66.99 | 72.88 | 74.18 | 71.90 | 71.90 | 71.90 | 71.90 | 71.90 | 71.90 | 72.22 | 71.90 |
Monk_2 | 67.13 | 68.52 | 68.75 | 69.21 | 68.52 | 68.75 | 68.75 | 69.21 | 68.98 | 68.98 | 68.75 |
CMC | 66.26 | 66.53 | 66.80 | 66.80 | 66.80 | 66.80 | 66.80 | 66.46 | 66.46 | 66.33 | 66.53 |
1 | DENG N Y, TIAN Y J. New method in data mining:support vector machine. Beijing: Science Press, 2004. |
2 |
ZHANG X D, LI A, PAN R. Stock trend prediction based on a new status box method and AdaBoost probabilistic support vector machine. Applied Soft Computing, 2016, 49, 385- 398.
doi: 10.1016/j.asoc.2016.08.026 |
3 |
JAYADEVA, KHEMCHANDANI R, CHANDRA S. Twin support vector machines for pattern classification. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007, 29 (5): 905- 910.
doi: 10.1109/TPAMI.2007.1068 |
4 | ARUN KUMAR M, GOPAL M. Least squares twin support vector machines for pattern classification. Expert Systems with Applications, 2009, 36 (4): 7535- 7543. |
5 |
SHAO Y H, ZHANG C H, WANG X B, et al. Improvements on twin support vector machines. IEEE Trans. on Neural Networks, 2011, 22 (6): 962- 968.
doi: 10.1109/TNN.2011.2130540 |
6 | PENG X. TPMSVM:a novel twin parametric-margin support vector machine for pattern recognition. Pattern Recognition, 2011, 44 (10): 2678- 2692. |
7 |
ZHANG Y X, MA Y. Application of supervised machine learning algorithms in the classification of sagittal gait patterns of cerebral palsy children with spastic diplegia. Computers in Biology and Medicine, 2019, 106, 33- 39.
doi: 10.1016/j.compbiomed.2019.01.009 |
8 |
RAHMAN I, KUZLU M, RAHMAN S. Power disaggregation of combined HVAC loads using supervised machine learning algorithms. Energy and Buildings, 2018, 172, 57- 66.
doi: 10.1016/j.enbuild.2018.03.074 |
9 |
BOSTIK O, KLECKA J. Recognition of CAPTCHA charac-ters by supervised machine learning algorithms. IFAC-Papers Online, 2018, 51 (6): 208- 213.
doi: 10.1016/j.ifacol.2018.07.155 |
10 | MIKHAIL B, PARTHA N, VIKAS S. Manifold regularization:a geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 2006, 7 (11): 2399- 2434. |
11 |
YANG Z J, XU Y T. A safe screening rule for Laplacian support vector machine. Engineering Applications of Artificial Intelligence, 2018, 67, 309- 316.
doi: 10.1016/j.engappai.2017.10.011 |
12 |
LI Z Y, TIAN Y, LI K, et al. Reject inference in credit scoring using semi-supervised support vector machines. Expert Systems with Applications, 2017, 74, 105- 114.
doi: 10.1016/j.eswa.2017.01.011 |
13 |
QI Z Q, TIAN Y J, SHI Y. Laplacian twin support vector machine for semi-supervised classification. Neural Networks, 2012, 35, 46- 53.
doi: 10.1016/j.neunet.2012.07.011 |
14 | CHEN W J, SHAO Y H, DENG N Y, et al. Laplacian least squares twin support vector machine for semi-supervised classification. Neuro Computing, 2014, 145, 465- 476. |
15 | YANG Z J, XU Y T. Laplacian twin parametric-margin support vector machine for semi-supervised classification. Neuro Computing, 2016, 171, 325- 334. |
16 |
RASTOGI R, SHARMA S. Fast Laplacian twin support vector machine with active learning for pattern classification. Applied Soft Computing Journal, 2019, 74, 424- 439.
doi: 10.1016/j.asoc.2018.10.042 |
17 |
WANG Y Y, MENG Y, LI Y, et al. Semi-supervised manifold regularization with adaptive graph construction. Pattern Recognition Letters, 2017, 98, 90- 95.
doi: 10.1016/j.patrec.2017.09.004 |
18 | GAO S X, YU Z T, JIN T S, et al. Multi-view low-rank matrix factorization using multiple manifold regularization. Neuro Computing, 2019, 335, 143- 152. |
19 |
LIU B, LI Y M, XU Z L. Manifold regularized matrix completion for multi-label learning with ADMM. Neural Networks, 2018, 101, 57- 67.
doi: 10.1016/j.neunet.2018.01.011 |
20 |
ZHANG X D, MA J G, LI A H. Quintic spline smooth semisupervised support vector classification machine. Journal of Systems Engineering and Electronics, 2015, 26 (3): 626- 632.
doi: 10.1109/JSEE.2015.00070 |
21 |
ZHANG X D, LI A, RAN P, et al. Construction and practice of the optimal smooth semi-supervised support vector machine. Journal of Systems Science and Information, 2015, 3 (5): 398- 410.
doi: 10.1515/JSSI-2015-0398 |
22 |
ZHANG J, FAN X H, BAN D K. Smooth support vector machine based on circular tangent function. The Journal of China Universities of Posts and Telecommunications, 2016, 23 (1): 68- 72, 96.
doi: 10.1016/S1005-8885(16)60010-9 |
23 |
KUMAR M A, GOPAL M. Application of smoothing technique on twin support vector machines. Pattern Recognition Letters, 2008, 29 (13): 1842- 1848.
doi: 10.1016/j.patrec.2008.05.016 |
24 |
CHEN W J, SHAO Y H, HONG N. Laplacian smooth twin support vector machine for semi-supervised classification. International Journal of Machine Learning and Cybernetics, 2014, 5 (3): 459- 468.
doi: 10.1007/s13042-013-0183-3 |
25 |
MALDONADO S, LOPEZ J. Dealing with high-dimensional class-imbalanced datasets:embedded feature selection for SVM classification. Applied Soft and Computing, 2018, 67, 94- 105.
doi: 10.1016/j.asoc.2018.02.051 |
26 |
POVALEJ Z. Quasi-Newton's method for multi-objective optimization. Journal of Computational and Applied Mathematics, 2014, 255, 765- 777.
doi: 10.1016/j.cam.2013.06.045 |
27 |
MANGASARIAN O L, WILD E W. Multi-surface proximal support vector machine classification via generalized eigenvalues. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2006, 28 (1): 69- 74.
doi: 10.1109/TPAMI.2006.17 |
28 |
ZHU L Y, LI W, GAO K, et al. The tourism-specific sentiment vector construction based on kernel optimization function. Procedia Computer Science, 2017, 122, 1162- 1167.
doi: 10.1016/j.procs.2017.11.487 |
29 | MA J G. Research and application of smooth semi-supervised support vector machine based on generalized spline function. Beijing: University of Science and Technology Beijing, 2013. |
30 | DENG X Y, LIU Q, DENG Y, et al. An improved method to construct basic probability assignment based on the confusion matrix for classification problem. Information Sciences, 2016, 340, 250- 261. |
31 |
LUQUE A, CARRASCO A, MARTIN A, et al. The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognition, 2019, 91, 216- 231.
doi: 10.1016/j.patcog.2019.02.023 |
32 |
TRAJDOS P, KURZYNSKI M. Weighting scheme for a pairwise multi-label classifier based on the fuzzy confusion matrix. Pattern Recognition Letters, 2018, 103, 60- 67.
doi: 10.1016/j.patrec.2018.01.012 |
[1] | Haifen YANG, Hao ZHANG, Houjun WANG, Zhengyang GUO. A novel approach for unlabeled samples in radiation source identification [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 354-359. |
[2] | Shuyu ZHENG, Xiaokuan ZHANG, Weichen ZHAO, Jianxiong ZHOU, Binfeng ZONG, Jiahua XU. Parameter estimation of GTD model and RCS extrapolation based on a modified 3D-ESPRIT algorithm [J]. Journal of Systems Engineering and Electronics, 2020, 31(6): 1206-1215. |
[3] | Yiru ZOU, Chunsheng LIU, Ke LU. Extended state observer based smooth switching control for tilt-rotor aircraft [J]. Journal of Systems Engineering and Electronics, 2020, 31(4): 815-825. |
[4] | Ximeng XU, Rennong YANG, Ying FU. Situation assessment for air combat based on novel semi-supervised naive Bayes [J]. Journal of Systems Engineering and Electronics, 2018, 29(4): 768-779. |
[5] | Xiaojun SUN, Guangming YAN. Multi-sensor optimal weighted fusion incremental Kalman smoother [J]. Journal of Systems Engineering and Electronics, 2018, 29(2): 262-268. |
[6] | Hongyin SHI, Saixue XIA, Ye TIAN. ISAR imaging based on improved phase retrieval algorithm [J]. Journal of Systems Engineering and Electronics, 2018, 29(2): 278-285. |
[7] | Xiaolin Zhang, Jian Chen, and Zhiguo Sun. Modulation recognition of communication signals based on SCHKS-SSVM [J]. Systems Engineering and Electronics, 2017, 28(4): 627-. |
[8] | Tao Yang and Dongmei Fu. Semi-supervised classification based on p-norm multiple kernel learning with manifold regularization [J]. Journal of Systems Engineering and Electronics, 2016, 27(6): 1315-1325. |
[9] | Qing Wu, Leyou Zhang, and Wan Wang. New family of piecewise smooth support vector machine [J]. Systems Engineering and Electronics, 2015, 26(3): 618-625. |
[10] | Xiaodan Zhang, Jinggai Ma, Aihua Li, and Ang Li. Quintic spline smooth semi-supervised support vector classification machine [J]. Systems Engineering and Electronics, 2015, 26(3): 626-632. |
[11] | Ning Ma and Jianxin Wang. Dynamic threshold for SPWVD parameter estimation based on Otsu algorithm [J]. Journal of Systems Engineering and Electronics, 2013, 24(6): 919-924. |
[12] | Jing Wang, Jianguo Huang, Jing Han, and Zhenhua Xu. New targets number estimation method under colored noise background [J]. Journal of Systems Engineering and Electronics, 2012, 23(6): 831-837. |
[13] | Ming Diao and Chunlian An. Direction finding of coexisted independent and coherent signals using electromagnetic vector sensor [J]. Journal of Systems Engineering and Electronics, 2012, 23(4): 481-487. |
[14] | Chuandong Qin and Sanyang Liu. Fuzzy smooth support vector machine with different smooth functions [J]. Journal of Systems Engineering and Electronics, 2012, 23(3): 460-466. |
[15] | Huang Tianyun. On the direct searches for non-smooth stochastic optimization problems [J]. Journal of Systems Engineering and Electronics, 2009, 20(4): 889-898. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||